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Abstract Code reviews in pull-based model are open to community users on GitHub. Various participants are taking

part in the review discussions and the review topics are not only about the improvement of code contributions but also

about project evolution and social interaction. A comprehensive understanding of the review topics in pull-based model

would be useful to better organize the code review process and optimize review tasks such as reviewer recommendation and

pull-request prioritization. In this paper, we first conduct a qualitative study on three popular open-source software projects

hosted on GitHub and construct a fine-grained two-level taxonomy covering four level-1 categories (code correctness, pull-

request decision-making, project management, and social interaction) and 11 level-2 subcategories (e.g., defect detecting,

reviewer assigning, contribution encouraging). Second, we conduct preliminary quantitative analysis on a large set of review

comments that were labeled by TSHC (a two-stage hybrid classification algorithm), which is able to automatically classify

review comments by combining rule-based and machine-learning techniques. Through the quantitative study, we explore

the typical review patterns. We find that the three projects present similar comments distribution on each subcategory.

Pull-requests submitted by inexperienced contributors tend to contain potential issues even though they have passed the

tests. Furthermore, external contributors are more likely to break project conventions in their early contributions.

Keywords pull-request, code review, review comment

1 Introduction

The pull-based development model is becoming

increasingly popular in distributed collaboration for

open-source software (OSS) development[1-4]. On

GitHub 1○ alone, the largest social-coding community,

nearly half of collaborative projects (already over 1

million[4] in January 2016) adopted this model. In

pull-based development, any contributor can freely fork

(i.e., clone) an interesting public project and modify the

forked repository locally (e.g., fixing bugs and adding

new features) without asking for the access to the cen-

tral repository. When the changes are ready to merge

back to the master branch, the contributors submit a

pull-request and then a rigorous code review process is

performed before the pull-request gets accepted.

Code review is a communication channel where in-

tegrators, who are core members of a project, can ex-

press their concern for the contribution[3,5-6]. If they

doubt the quality of a submitted pull-request, integra-

tors make comments that ask the contributors to im-

prove the implementation. With pull-requests becom-

ing increasingly popular, most large OSS projects allow

for crowd sourcing of pull-request reviews to a large

number of external developers[7] to reduce the work-

load of integrators. These external developers are in-

terested in these projects and are concerned about their

development. After receiving the review comments, the
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contributor usually responds positively and updates the

pull-request for another round of review. Thereafter,

the responsible integrator makes a decision to accept

or reject the pull-request by taking all judgments and

changes into consideration.

Previous studies[8-10] have shown that code review,

as a well-established software quality practice, is one

of the most significant stages in software development.

It ensures that only high-quality code changes are ac-

cepted, based on the in-depth discussions among re-

viewers. With the evolution of collaboration tools and

environment[11-12], development activities in the com-

munities like GitHub are more transparent and so-

cial. Contribution evaluation in the social coding com-

munities is more complex than simple acceptance or

rejection[5]. Various participants are taking part in

the discussions and the discussion topics are not only

about the improvement of code contributions but also

about project evolution and social interaction. A com-

prehensive understanding of the review topics in pull-

based model would be useful to better organize the

social code review process and optimize review tasks

such as reviewer recommendation[7,13] and pull-request

prioritization[14].

Several similar studies have been conducted on ana-

lyzing reviewers’ motivation and issues raised in code

reviews. Bacchelli and Bird[15] explored the motiva-

tion, outcome and challenge in code reviews based on

an investigation of developers and projects at Microsoft.

They found that although defect finding is still the

major motivation in code reviews, defect related com-

ments comprise a small proportion. Their study is fo-

cused on commercial projects and the reviewers of these

projects are mainly the employees of Microsoft. How-

ever, projects using the pull-based model in GitHub

are developed in a more transparent and open environ-

ment and code reviews are executed by the commu-

nity users. Community reviewers may serve for diffe-

rent organizations, use the projects for various pur-

poses, and hold specific consideration in code review

processes. Therefore different review topics may exist

in the pull-based development model compared with

those in the commercial development model. Tsay et

al.[5] explored issues raised around code contributions

in GitHub. They reported that reviewers discussed

on both the appropriateness of the contribution pro-

posal and the correctness of the implemented solution.

They only analyzed comments of highly discussed pull-

requests which have extended discussions. According

to the statistics in their dataset, however, each pull-

request gets 2.6 comments in average and only about

16% of the pull-requests have extended discussions.

The small proportion of explored pull-requests may re-

sult in bias in the experimental results and constrain

the generalization of their findings. Therefore, we tried

to revisit the review topics in the pull-based develop-

ment model and conduct qualitative and quantitative

analysis based on a large-scale dataset of review com-

ments.

In this paper, we first conduct a qualitative study on

three popular open-source software projects hosted on

GitHub and construct a fine-grained taxonomy cover-

ing 11 categories (e.g., defect detecting, reviewer assign-

ing, contribution encouraging) for the review comments

generated in the discussions. Second, we perform pre-

liminary quantitative analysis on a large set of review

comments that are labeled by TSHC, a two-stage hy-

brid classification algorithm, which is able to automati-

cally classify review comments by combining rule-based

and machine-learning (ML) techniques.

The main contributions of this study include the

following.

• A fine-grained and multilevel taxonomy for review

comments in the pull-based development model is pro-

vided in relation to technical, management, and social

aspects.

• A high-quality manually labeled dataset of review

comments, which contains more than 5 600 items, can

be accessed via a web page 2○ and used in further stu-

dies.

• A high-performance automatic classification

model for review comments of pull-requests is proposed.

The model leads to a significant improvement in terms

of the weighted average F -measure, i.e., 9.2% in Rails,

5.3% in Elasticsearch, and 7.2% in Angular.js, com-

pared with the text-based method.

• Typical review patterns are explored, which may

provide implications for reviewers and collaborative

development platforms to better organize the code re-

view process.

The rest of this paper is organized as follows. Sec-

tion 2 provides the research background and introduces

the research questions. In Section 3, we elaborate the

approach of our study. Section 4 lists the research re-

sults, while Section 5 discusses several threats to the

validity of our study. Section 6 concludes this paper

and gives an outlook to the future work.

2○https://www.trustie.net/projects/2455, Oct. 2017.



1062 J. Comput. Sci. & Technol., Nov. 2017, Vol.32, No.6

2 Background and Related Work

2.1 Pull-Based Development Model

In GitHub, a growing number of developers con-

tribute to the open source projects by using the pull-

request mechanism[2]. As illustrated in Fig.1, a typical

contribution process based on the pull-based develop-

ment model in GitHub involves the following steps.

Description Test
Result

Changed
Files

Submitter

Core Member

External Developer

Forked
Repository

Original
Repository

CI Server

1: Fork

2: Edit

3: Pull

Request

4: Test 5: Code Review

6: Decide

Update

Fig.1. Pull-based work-flow on GitHub.

Fork. A contributor can find an interesting project

by following several well-known developers and watch-

ing their projects. Before contributing, the contributor

has to fork the original project.

Edit. After forking, the contributor can edit lo-

cally without disturbing the main branch in the original

repository. He/she is free to do whatever he/she wants,

such as implementing a new feature or fixing bugs ac-

cording to the cloned repository.

Pull Request. When the work is finished, the con-

tributor submits the changed codes from the forked

repository to its source by a pull-request. Except for

commits, the submitter needs to provide a title and

description to elaborate on the objective of the pull-

request.

Test. Several reviewers play the role of testers to

ensure that the pull-request does not break the current

runnable state. They check the submitted changes by

manually running the patches locally or through an au-

tomatic manner with the help of continuous integration

(CI) services.

Review. All developers in the community have the

chance to discuss the pull-request in the issue tracker,

with the existence of pull-request description, changed

files, and test result. After receiving the feedback from

reviewers, the contributor updates his/her pull-request

by attaching new commits for another round of code

review.

Decide. A responsible manager of the core team

considers all the opinions of reviewers and merges or

rejects the pull-request.

Although research on pull-requests is in its early

stage, several relevant studies have been conducted in

terms of exploratory analysis, priority determination,

reviewer recommendation, etc. Gousios et al.[2,16] con-

ducted a statistical analysis of millions of pull-requests

from GitHub and analyzed the popularity of pull-

requests, the factors affecting the decision on a pull-

request, and the time to merge a pull-request. Their

research result implies that there is no difference be-

tween core members and outside contributors in get-

ting their pull-requests accepted and only 13% of the

pull-requests are rejected for technical reasons. Tsay et

al.[8] examined how social and technical information is

used to evaluate pull-requests. They found that review-

ers take into account of both the contributors’ technical

practices and the social connection between contribu-

tors and reviewers. Yu et al.[9,17] conducted a quanti-

tative study, and discovered that latency is a complex

issue to explain adequately, and CI is a dominant fac-

tor for the process, which even changes the effects of

some traditional predictors. Yu et al.[7,13] proposed ap-

proaches to automatically recommend potential pull-

request reviewers, which apply Random Forest algo-

rithm and Vector Space Model respectively. van der

Veen et al.[14] presented PRioritizer, a prototype pull-

request prioritization tool, which works to recognize the

top pull-requests the core members should focus on.

2.2 Code Review

Code review is employed by many software projects

to examine the changes made by others in source codes,

find potential defects, and ensure software quality be-

fore they merge back[18]. Traditional code review,

which is also well known as code inspection proposed by

Fagan[19], has been performed since the 1970s[15]. The

inspection process consists of well-defined steps which

are executed one by one in group meetings[19]. Many

studies[20] have proven the value of code inspection in

software development. However, its cumbersome and
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synchronous characteristics have hampered its univer-

sal application in practice[15]. On the other hand, with

the evolution of software development model, this ap-

proach is also usually misapplied according to Rigby et

al.’s exploration[21].

With the occurrence and development of version

control systems and collaboration tools, modern code

review (MCR)[22] is adopted by many software com-

panies and teams. Different from the formal code in-

spection, MCR is a lightweight mechanism that is less

time-consuming and supported by various tools. Rigby

and Storey[22] explored the MCR process in open source

communities. They performed case studies on GCC

(GNU Compiler Collection), Linux, and other projects

and found several code review patterns and a broadcast-

based code review style used by Apache. Basum et

al.[23] analyzed MCR practice in commercial software

development teams in order to improve the use of code

reviews in industry. While the main motivation for code

review was believed to be finding defects to control soft-

ware quality, recent research[15] has revealed additional

expectations, including knowledge transfer, increased

team awareness, and creation of alternative solutions

to problems. Moreover, other studies[22-24] also inves-

tigated the factors that influence the outcomes of code

review process.

In recent years, collaboration tools have evolved

with social media[11-12]. Especially, GitHub integrates

the function of code review in the pull-based model and

makes it more transparent and social[11]. The evalua-

tion of pull-requests in GitHub is a form of MCR[15].

The way to give voice on pull-request evaluation is to

participate in the discussion and leave comments. Tsay

et al.[5] analyzed highly discussed pull-requests which

have extended discussions and explored evaluating code

contributions through discussion in GitHub. Georgios

et al.[3] investigated the challenges faced by the integra-

tors in GitHub by conducting a survey which involves

749 integrators.

Two kinds of comments can be identified by their

positions in the discussions: issue comments (i.e., gene-

ral comments) as a whole about the overall contribu-

tion and inline comments for specific lines of code in the

changes[7,25]. Actually, there is another kind of review

comments in GitHub: committing comments which are

commented on the commitments of pull-requests[26].

Among these three kinds of comments, general com-

ments and inline comments account for the vast majo-

rity of all the comments, and the number of committing

comments is extremely small. Consequently, we only fo-

cus on general comments and inline comments and do

not take the committing comments into consideration.

As can be seen from Fig.2, all the review com-

ments corresponding to a pull-request are displayed and

ordered primarily by creation time. Issue comments

are directly visible, while inline comments is folded by

default and will be shown when the toggle button is

clicked.

Inline Comment

General Comment

Fig.2. Example comments on GitHub.

Due to the transparent environment, a large num-

ber of external developers, who are concerned about

the development of an open-source project, are allowed

to participate in the evaluation of any pull-request of

the public repository. All the participants can ask the

submitter to bring out the pull-request more clearly

or improve the solution. The prior study[2] also reveals

that in most projects, more than half of the participants

are external developers, while the majority of the com-

ments come from core team members. The diversity of

participants and their different concerns in pull-request

evaluation produces various types of review comments

which cover a wide range of topics from solution detail

to contribution appropriateness.

2.3 Research Questions

In this paper, we focus on analyzing the review com-

ments in GitHub. Although prior work[3,5,15] has iden-

tified several motivations and issues raised in code re-

views, we believe that the review topics involved in the

pull-based development model are not yet well under-

stood, especially that the underlying taxonomy of re-

view topics has not been identified. Consequently, our

first question is the following.

RQ1. What is the taxonomy for review comments

on pull-requests?

Furthermore, we would like to quantitatively ana-

lyze review topics and obtain more solid knowledge.
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Therefore, we need a large scale of labeled review com-

ments to support the quantitative analysis which leads

to the second question.

RQ2. Is it possible to automatically classify review

comments according to the defined taxonomy?

With a large set of labeled comments being availa-

ble, we try to conduct quantitative analysis and explore

the typical review patterns such as what the most com-

ments are talking about and how contributors raise var-

ious kinds of issues in pull-requests. Therefore, our last

research question is as follows.

RQ3. What are the typical review patterns in the

pull-based model?

3 Approach

3.1 Approach Overview

The goal of our work is to investigate the code re-

view practice in GitHub. we aim to qualitatively and

quantitatively analyze review topics in the pull-based

development model. As illustrated in Fig.3, our re-

search approach consists of the following steps.

Taxonomy

Labeled
Comments

Review
Comments

Pull-

RequestsGitHub

Manual
Analysis

Labeled
Comments

Comment
Patterns

Data
Collection

Taxonomy
Definition

Manual Labeling

Automatic
Classification

Quantitative
Analysis

TSHC

Fig.3. Overview of our approach.

1) Data Collection. In our prior work, we collected

4 896 projects that have most number of pull-requests

on GitHub. This dataset was crawled through the offi-

cial API offered by GitHub and updated in the current

study. In addition, we also used the data released by

GHTorrent 3○.

2) Taxonomy Definition. We constructed a fine-

grained multilevel taxonomy for the review comments

in the pull-based development model.

3) Automatic Classification. We proposed the

TSHC algorithm, which automatically classifies review

comments using rule-based and ML techniques.

4) Quantitative Analysis. We did a preliminary

quantitative analysis on a large set of review comments

which were labeled by the TSHC algorithm.

3.2 Dataset

The experiments in the paper are conducted on

three representative open source projects, namely Rails,

Elasticsearch and Angular.js, which make heavy use

of pull-requests in GitHub. The dataset is composed

of two sources: GHTorrent MySQL dump released in

June 2016 4○ and our own crawled data 5○ from GitHub.

From GHTorrent, we can get a list of projects together

with their basic information such as programming lan-

guage, hosting time, the number of forks, and the list of

pull-requests. For our own dataset, we have crawled the

text content of pull-requests (i.e., title and description)

and review comments according to the URLs provided

by GHTorrent. Finally, the two sources are linked by

the ID of projects and pull-request number. Table 1

lists the key statistics of the dataset.

We studied on original projects (i.e., not forked from

others) written in Ruby, Java and JavaScript, which

are three of the most popular languages 6○ on GitHub.

The three selected projects are hosted on GitHub at an

early time and applied in different areas: Rails is used

to build websites, Elasticsearch acts as a search server,

and Angular.js is an outstanding front-end development

framework. This ensures the diversity of experimental

projects, which is needed to increase the generalizabi-

lity of our work. The number of stars, the number of

forks, and the number of contributors indicate the hot-

ness of a project. Starring is similar to the function of

a bookmarking system which informs users of the latest

activities of projects that they have starred.

In total, our dataset contains 27 339 pull-requests

and 147367 review comments.

3.3 Taxonomy Definition

Previous work has studied the challenges faced by

pull-request reviewers and the issues introduced by pull-

request submitters[3,5]. Inspired by their work, we de-

cide to comprehensively observe the topics of code re-

3○http://ghtorrent.org, Oct. 2017.
4○http://ghtorrent-downloads.ewi.tudelft.nl/mysql/mysql-2017-06-01.tar.gz, Oct. 2017.
5○https://www.trustie.net/boards/6297/topics/44132, Oct. 2017.
6○https://github.com/blog/2047-language-trends-on-github, Oct. 2017.
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Table 1. Dataset of Our Experiments

Project Language Application Area Hosted at #Star #Fork #Contr #PR #Comnt

Rails Ruby Web framework May 20, 2009 33 906 13 789 3 194 14 648 75 102

Elasticsearch Java Search server Feb. 8, 2010 20 008 6 871 753 6 315 38 930

Angular.js JavaScript Front-end framework Jan. 6, 2010 54 231 26 930 1 557 6 376 33 335

Note: Contr: contributor; PR: pull-request; Comnt: comment; #: number of.

views in depth rather than merely to focus on technical

and nontechnical perspectives.

We conducted a card sort[15] to determine the taxo-

nomy schema, which was executed manually through an

iterative process of reading and analyzing review com-

ments randomly collected from the three projects. The

following steps were executed to define the taxonomy.

1) First, we randomly selected 900 review comments

(300 for each project).

2) Two main participants independently conducted

card sorts on 70% of the comments. They firstly la-

beled each selected comment with a descriptive mes-

sage. The labeled comments were then divided into

different groups according to their descriptive messages.

Through a rigorous analysis of existing literature and

their own experience with working and analyzing the

pull-based model in the last two years, they identified

their respective draft taxonomies.

3) They then met and discussed their identified draft

taxonomies. When they agreed with each other, the

initial taxonomy was constructed.

4) Another 10 participants were invited to help var-

ify and improve the taxonomy by examining another

10% of the comments. After some refinement of cate-

gory definition and adjustment of taxonomy hierarchy

was executed, the final taxonomy was determined.

5) Finally, the two main participants independently

classified the remaining 20% of the comments into the

taxonomy. We used one of the most popular reliability

measurements, which is percent agreement, to calcu-

late their reliability. We found they agreed on 97.8%

(176/180) of the labeling of comments.

In the above process, the two main participants (i.e.,

the first two authors of the paper) have five years’ and

eight years’ experience in software development respec-

tively. Both of them are interested in academic research

in empirical software engineering and social coding. Es-

pecially, the second participant has four-year research

experience in the pull-based development model. An-

other 10 participants also work at our research team

including postgraduates, Ph.D. candidates, and project

developers.

3.4 Automatic Classification

After the taxonomy of review topics is defined, we

would like to conduct quantitative study on a large

scale of labeled review comments which are expected

to be classified by an automatic approach. First of all,

we need to manually label a set of comments to train

the automatic classification model. And then, we use

the classification model to automatically label a large

dataset of comments.

3.4.1 Manual Labeling

For each project, we randomly sampled 200 pull-

requests (each of which gets more than 0 comment) per

year from 2013 to 2015. Overall, 1 800 distinct pull-

requests and 5 645 review comments are sampled. Ac-

cording to the defined taxonomy, we manually classified

the sampled review comments. We built an online la-

beling platform (OLP) which was deployed on the pub-

lic network and offered a web-based interface. OLP

is helpful to reduce the extra burden on the labeling

executor and ensure the quality of the manual labeling

results.

As shown in Fig.4, the main interface of OLP con-

tains three sections.

(a)

(b) (c)

Fig.4. Main interface of OLP. (a) Section 1. (b) Section 2. (c)
Section 3.

Section 1. The title, description, and submitter’s

user name of a pull-request are displayed in this sec-
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tion. The hyper-link of the pull-request on GitHub is

also shown to make it more convenient to jump to the

original web page for a more detailed view and inspec-

tion if necessary.

Section 2. All the review comments of a pull-request

are listed in this section and ordered by creation time.

The user name, comment type (inline comment or is-

sue comment), and creation time of a review comment

appear on the top of comment content.

Section 3. Besides a comment, there are candidate

labels corresponding to our taxonomy, which can be se-

lected by clicking the check-box next to the label. The

use of check-boxes means that multiple labels can be

assigned to a comment. Other labels that are not in

our list can also be reported by writing free text in the

text field named “other”.

3.4.2 Two-Stage Hybrid Classification

Fig.5 illustrates the automatic classification model

TSHC. TSHC consists of two stages that utilize com-

ments text and other information extracted from com-

ments and pull-requests respectively.

Stage 1. The classification in this stage mainly uti-

lizes the text part of each review comment and produces

a vector of possibility (VP), in which each item is the

possibility of whether a review comment will be labeled

with the corresponding category.

Preprocessing is necessary before formal comment

classification. Reviewers tend to reference the source

code, hyper-link, or statement of others in a review

comment to clearly express their opinions, prove their

points, or reply to other people. These behaviors pro-

mote the review process but cause a great challenge to

comment classification. Words in these reference texts

contribute minimally to the classification and even in-

troduce interference. Hence, we transform them into

single-word indicators to reduce vocabulary interference

and reserve reference information. Specifically, the

source code, hyperlink, and statement of others are re-

placed with “cmmcode”, “cmmlink” and “cmmtalk” re-

spectively.

After preprocessing, a review comment is classified

by the rule-based technique, which uses inspection rules

to match the comment text for each category. Several

phrases often appear in the comments of a specific cate-

gory. For instance, “lgtm” (abbreviation of “looks good

to me”) is usually used by reviewers to express their

satisfaction with a pull-request. This type of phrases is

discriminating and helpful in recognizing the category

of a review comment. Therefore, we established inspec-

tion rules for each category, which are a set of regular

expressions abstracted from discriminating phrases. A

category label is assigned to a review comment, and the

corresponding item in VP is set to 1 if one of its inspec-

tion rules matches the comment text. In our method

each category gets 7.5 rules in average and only part

of the inspection rules and the corresponding matched

comments are listed below.

• Example inspection rule 1

– (blank|extra) (line|space)s?

– “Please add a new blank line after the in-

– clude”

• Example inspection rule 2

– (looks|seem)s? (good|great|useful)

– “Looks good to me, the grammar is definitely

– better.”

• Example inspection rule 3

– (cc:?|wdyt|defer to|\br\?) (@\w+ *)+

Comment
Text

Stage 1

Stage 2
Inspection Rule 1

Inspection Rule 2

Inspection Rule n

Inspection Rules

Text Classifier 1

Text Classifier 2

Text Classifier n

Text Classifiers

Prepro-
cessing

Possibi-
lities

Other
Features

Feature
Composer

Prediction Model 1

Prediction Model 2

Prediction Model n

Prediction Models

Class
Labels

Review
Comments

Pull-
Requests

... ...

...

Fig.5. Overview of TSHC.
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– “/cc @fxn can you take a look please?”

• Example inspection rule 4

– thanks?|thxs?|:(\w+)?heart:

– “@xxx looks good. Thank you for your con-

– tribution :yellow heart:”

The review comment is then processed by the ML-

based technique. ML-based classification is performed

with scikit-learn 7○, particularly the support vector ma-

chine (SVM) algorithm. The comment text is tok-

enized and each token is stemmed to the root form.

We filtered out punctuations from word tokens and re-

served English stop words because we assumed that

common words play an important role in short texts,

such as review comments. We adopted the TF-IDF

(term frequency-inverse document frequency) model[27]

to extract a set of features from the comment text and

applied the ML algorithm to text classification. A

single review comment often addresses multiple top-

ics. Hence, one of the goals of TSHC is to per-

form multi-label classification. To this end, we con-

struct text classifiers (TCs) for each category with a

one-versus-all strategy. For a review comment which

has been matched by inspection rule Ri (supposing

that n categories of C1, C2, . . . , Cn exist), each TC

(TC1, TC2, . . . , TCn), except for TCi, is applied and

predicts the possibility of this review comment belong-

ing to the corresponding category.

Finally, the VP determined by inspection rules and

text classifiers is passed on to the second stage.

Stage 2. The classification in this stage is performed

on composed features. Review comments are usually

short texts. Our statistics indicates that the minimum,

maximum, and average numbers of words contained in a

review comment are 1, 1 527, and 32, respectively. The

text information contained in a review comment is in-

sufficient to determine its category. Therefore, in addi-

tion to the VP generated in stage 1, we also considered

the following other features related to review comments.

Comment length. This feature refers to the total

number of characters contained in a comment text af-

ter preprocessing. Long comments are likely to argue

about pull-request appropriateness and code correct-

ness.

Comment type. This binary feature indicates whe-

ther a review comment is an inline comment or an is-

sue comment. An inline comment tends to talk about

the solution detail, whereas an issue comment is likely

to talk about other “high-level” issues, such as pull-

request decision and project management.

Core team. This binary feature refers to whether

the comment author is a core member of a project or

an external contributor. Core members are more likely

to pay attention to pull-request appropriateness and

project management.

Link inclusion. This binary feature identifies if a

comment includes hyper-links. Hyper-links are usually

used to provide evidence when someone insists on a

point of view or to offer guidelines when someone wants

to help other people.

Ping inclusion. This binary feature determines if a

comment includes ping activity (occurring by the form

of “@ user-name”).

Code inclusion. This binary feature denotes if

a comment includes the code elements. Comments

related to the solution detail tend to contain code

elements. However, this assumption does not limit

whether the code is a replica of the committed code

or a new code snippet written by the reviewer

Ref inclusion. This binary feature indicates if a

comment includes a reference on the statement of oth-

ers. Such a reference indicates a reply to someone,

which probably reflects further suggestion to or dis-

agreement with a person.

Sim pr title. This feature refers to the similarity

between the text of the comment and the text of the

pull-request title (measured by the number of common

words divided by the number of union words).

Sim pr desc. This binary feature denotes the simi-

larity between the text of the comment and the text

of the pull-request description (measured similarly as

how Sim pr title is computed). Comments with high

similarity to the title or description of a pull-request

are likely about the solution detail or the value of the

pull-request.

Together with the VP passed from stage 1, these

features are composed to form a new feature vector to

be processed by prediction models. Similar to stage

1, stage 2 provides binary prediction models for each

category. In the prediction models, a new VP is gene-

rated to represent how likely a comment will fall into a

specific category. After iterating the VP, a comment is

labeled with class Ci if the i-th vector item is greater

than 0.5. If all the items of the VP are less than 0.5,

the class label corresponding to the largest possibility

will be assigned to the comment. Finally, each com-

ment processed by TSHC is marked with at least one

class label.

7○http://scikit-learn.org/, Oct. 2017.
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3.5 Quantitative Analysis

To identify typical review patterns, we used our

trained hybrid classification model to classify a large

scale of review comments and then examined the re-

view patterns based on this automatically classified

dataset. In total, we classified 147 367 comments of

27 339 pull-requests. Based on this dataset, we con-

ducted a preliminary quantitative study. We first ex-

plored the distribution of review comments on each

category and then we reported some of the findings de-

rived from the distribution.

4 Results

4.1 RQ1: What Is the Taxonomy for Review

Comments on Pull-Requests

Table 2 shows the complete taxonomy. We identi-

fied four level-1 (L1) categories, namely code correct-

ness (L1-1), PR (pull-request) decision-making (L1-2),

project management (L1-3), and social interaction (L1-

4), each of which contains more specific level-2 sub-

categories. For each level-2 subcategory, we present its

description together with an example comment. We

show short comments or only the key part of long com-

ments to provide a brief display. Compared with pre-

vious studies[5,15], our hierarchical taxonomy presents

a more systematic and elaborate schema of review top-

ics in the pull-based model. Moreover, we succeeded

in identifying a group of review comments related to

project management (e.g., road-map managing (L2-7),

reviewer assigning (L2-8)) and found them to be proper

positions in the final taxonomy.

Also, we would like to point out it is a common phe-

nomenon that a single comment usually covers multiple

topics. The following review comments are provided as

examples.

Example 1. “Thanks for your contribution! This

Table 2. Complete Taxonomy

Level-1 Category Level-2 Subcategory Description & Example

Code correctness (L1-1) Style checking (L2-1) Pointing out extra blank lines, improper indention, inconsistent
naming convention, etc.

e.g., “scissors: this blank line”

Defect detecting (L2-2) Figuring out runtime program errors or evolvability defects, etc.

e.g., “he default should be ‘false‘” and “let’s extract this into a
constant. No need to initialize it on every call.”

Code testing (L2-3) Demanding submitters to provide test case for changed codes, re-
porting test results, etc.

e.g., “this PR will need a unit test, I’m afraid, before it can be
merged.”

PR decision-making (L1-2) Value affirming (L2-4) Satisfied with the pull-request and agreeing to merge it

e.g., “PR looks good to me. Can you . . . ”

Solution disagreeing (L2-5) Rejecting to merge the pull-request for duplicate proposal, unde-
sired features, etc.

e.g., “I do not think this is a feature we’d like to accept. . . . ”

Further questioning (L2-6) Confused with the purpose of the pull-request and asking for more
details or use cases

e.g., “Can you provide a use case for this change?”

Project management (L1-3) Road-map managing (L2-7) Stating what type of changes a specific version is expected to
merge, etc.

e.g., “Closing as 3-2-stable is security fixes only now”

Reviewer assigning (L2-8) Pinging other reviewers to review this pull-request

e.g., “/cc @fxn can you take a look please?”

Convention checking (L2-9) Demanding submitters to squash the commits, formulate the mes-
sages, etc.

e.g., “. . . Can you squash the two commits into one? . . . ”

Social interaction (L1-4) Politely responding (L2-10) Expressing thanks for others’ contribution, apologizing for mis-
takes, etc.

e.g., “Thank you. This feature was already proposed and it was
rejected. See #xxx”

Contribution encouraging (L2-11) Agreeing with others’ opinions, complimenting others’ work, etc.

e.g., “:+1: nice one @cristianbica.”

Others Short sentences without clear or exact meaning like “@xxxx will do” and “The same here :)”

Note: Word beginning and ending with colon like “:scissors:” is a markdown grammar for emoji in GitHub.
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looks good to me but maybe you could split your patch

in two different commits? One for each issue.”

Example 2. “Looks good to me :+1: /cc @steveklab-

nik @fxn.”

In the first comment, the reviewer thanks the con-

tributor (L2-10) and shows his/her satisfaction with

this pull-request (L2-4), followed by a request of commit

splitting (L2-9). In the second comment, the reviewer

expresses that he/she agrees with this change (L2-4),

thinks highly of this work (L2-11, :+1: is markdown

grammar for emoji “thumb-up”), and assigns other re-

viewers to ask for more advice (L2-11). With regard to

reviewer assignment, reviewers tend to delegate a code

review if they are unfamiliar with the change under re-

view.

In addition, we collected 13 exception comments

which are labeled with “other” option. These comments

mainly fall into the following two groups.

• Platform-Related. This kind of comments is re-

lated to the platform, i.e., GitHub. Sometimes, deve-

lopers may be not familiar with the features of GitHub:

“I don’t understand why GitHub display all my com-

mits.”

• Simple Reply. Comments of this kind have only a

very few words and have not exact significant meaning:

“@** no.”, “yes” and “done”.

On one hand, the number of these comments is rela-

tively small and on the other hand these comments do

not provide too much contribution to the code review

process. Moreover, the process of taxonomy definition

in Subsection 3.3 has made our taxonomy relatively

complete and robust for its large-scale sampling, tho-

rough discussion and multiple validation. Therefore, we

exclude them from our analysis and do not adjust our

taxonomy.

Summary. From the qualitative study, we identified

a two-level taxonomy for review comments which con-

sists of four categories in level 1 and 11 subcategories

in level 2.

4.2 RQ2: Is It Possible to Automatically

Classify Review Comments According to

the Defined Taxonomy

In the evaluation, we designed a text-based classi-

fier (TBC) as a comparison baseline which only uses

the text content of review comments and does not ap-

ply any inspection rule or composed feature. TBC uses

the same preprocessing techniques and SVM models as

used in TSHC. Classification performance is evaluated

through a 10-fold cross-validation, namely splitting re-

view comments into 10 sets, of which nine sets are used

to train the classifiers and the remaining set is for the

performance test. The process is repeated 10 times.

Moreover, the evaluation metrics used in the paper are

computed by the following formulas.

Prec(L2-i) =
NCC(L2-i)

NTSHC(L2-i)
,

Rec(L2-i) =
NCC(L2-i)

Ntotal(L2-i)
,

F -M(L2-i) =
2× Prec(L2-i)×Rec(L2-i)

Prec(L2-i) +Rec(L2-i)
.

P rec(L2-i), Rec(L2-i), and F -M(L2-i) measure the

precision, recall and F -measure of each method on cate-

gory L2-i respectively. Ntotal(L2-i) is the total num-

ber of comments of category L2-i in the test dataset,

NTSHC(L2-i) is the number of comments that are class-

fied as L2-i by TSHC, and NCC(L2-i) is the number of

comments that have been correctly classified as L2-i.

Table 3 shows the precision, recall, and F -measure

provided by different approaches for level-2 subcate-

gories. Our approach achieves the highest precision,

recall, and F -measure scores in all categories with only

a few exceptions.

To provide an overall performance evaluation, we

used the weighted average metric value[28] of all cate-

gories according to the proportions of instances in each

category. (1) describes the formula to derive the ave-

rage F -measure. In the equation, the average F -

measure is denoted as Favg, the F -measure of category

L2-i as fi, and the number of instances of category L2-i

as ni.

Favg =

∑11
i=1 ni × fi
∑11

i=1 ni

. (1)

Table 3 indicates that our approach consistently

outperforms the baseline across the three projects.

Compared with that in the baseline, the improvement

in TSHC running on each project in terms of the

weighted average F -measure is 9.2% (from 0.688 to

0.780) in Rails, 5.3% (from 0.767 to 0.820) in Elastic-

search, and 7.2% (from 0.675 to 0.747) in Angular.js.

These results indicate that our approach is highly ap-

plicable in practice.

Furthermore, we would like to explore whether the

rule-based technique or composed features contribute

more to the increased performance of TSHC compared

with the baseline TBC. Therefore, we designed another

two comparative settings.
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Table 3. Classification Performance on Level-2 Subcategories

SC Rails Elasticsearch Angular.js

TBC TSHC TBC TSHC TBC TSHC

Prec Rec F -M Prec Rec F -M Prec Rec F -M Prec Rec F -M Prec Rec F -M Prec Rec F -M

L2-1 0.75 0.57 0.66 0.88 0.67 0.78 0.75 0.46 0.61 0.85 0.58 0.72 0.54 0.26 0.40 0.76 0.78 0.77

L2-2 0.63 0.84 0.74 0.71 0.86 0.79 0.67 0.92 0.80 0.77 0.82 0.80 0.65 0.71 0.68 0.69 0.71 0.70

L2-3 0.59 0.46 0.53 0.74 0.78 0.76 0.66 0.55 0.61 0.60 0.52 0.56 0.64 0.63 0.64 0.75 0.77 0.76

L2-4 0.56 0.35 0.46 0.73 0.58 0.66 0.92 0.84 0.88 0.91 0.88 0.90 0.83 0.72 0.78 0.84 0.79 0.82

L2-5 0.50 0.26 0.38 0.63 0.43 0.53 0.65 0.36 0.51 0.80 0.67 0.74 0.63 0.48 0.56 0.61 0.51 0.56

L2-6 0.47 0.21 0.34 0.60 0.36 0.48 0.33 0.11 0.22 0.38 0.26 0.32 0.45 0.51 0.48 0.47 0.49 0.48

L2-7 0.79 0.66 0.73 0.79 0.72 0.76 0.75 0.39 0.57 0.75 0.68 0.72 0.49 0.31 0.40 0.83 0.64 0.74

L2-8 0.83 0.77 0.80 0.98 0.78 0.88 0.57 0.35 0.46 0.88 0.90 0.89 0.35 0.16 0.26 0.96 0.67 0.82

L2-9 0.83 0.76 0.80 0.90 0.81 0.86 0.94 0.57 0.76 0.96 0.76 0.86 0.85 0.76 0.81 0.83 0.82 0.83

L2-10 0.98 0.93 0.96 0.99 0.98 0.99 0.91 0.84 0.88 0.93 0.95 0.94 0.90 0.80 0.85 0.94 0.93 0.94

L2-11 0.80 0.66 0.73 0.89 0.87 0.88 0.87 0.67 0.77 0.92 0.91 0.92 0.93 0.62 0.78 0.98 0.92 0.95

AVG 0.71 0.67 0.69 0.80 0.76 0.78 0.79 0.75 0.77 0.83 0.81 0.82 0.71 0.64 0.67 0.76 0.73 0.75

Note: SC: subcategory; Prec: precision; Rec: recall; F -M : F -measure; AVG: average.

• TBC R (TBC + Rule). In this setting, we com-

bined TBC with rule-based technique.

• TBC CF (TBC + Composed Features). In this

setting, we combined TBC with composed features in

stage 2.

Table 4 presents the experimental result. Overall

speaking, TBC R is better than TBC CF, which means

rule-based technique contributes more to the increased

performance than composed features in stage 2. Com-

pared with the TBC, TBC R achieves an improvement

of 7.24%, 5.19%, and 8.96% for Rails, Elasticsearch and

Angular.JS respectively, while TBC CF achieves 2.9%,

1.30% and 2.99% respectively.

We further studied the review comments mis-

categorized by TSHC. And the following is an example

of such comments.

Example 3. “While karma does globally install with

a bunch of plug-ins, we do need the npm install be-

cause without that you don’t get the karma-ng-scenario

karma plug-in.”

TSHC classifies it to error detecting (L2-2), but it

is actually a solution disagreeing (L2-5) comment. The

reason for this incorrect predication is two-fold, namely

the lack of explicit discriminating terms and the specific

explanation for rejection. Inspection rule of solution

disagreeing (L2-5) is unable to be matched because of

the lack of corresponding matching patterns. ML classi-

fiers tend to categorize it into error detecting (L2-2) be-

cause the specific explanation of opinion makes it more

like a low-level comment about code correctness instead

of a high-level one about the pull-request decision.

We attempted to solve this problem by adding fac-

tors (e.g., comment type and code inclusion) in stage 2

of TSHC, which can help reveal whether a review com-

ment is talking about the pull-request as a whole or the

solution detail. Although the additional information

improves the classification performance to some extent,

it is not sufficient to differentiate the two types of com-

ments. We plan to address the issue by extending the

manually labeled dataset and introducing a sentiment

analysis.

Summary. Compared with the baseline, TSHC

achieves higher performance in terms of the weighted

average F -measure, namely 0.78 in Rails, 0.82 in Elas-

ticsearch, and 0.75 in Angular.js, which indicates TSHC

is applicable in practical automatic classification.

Table 4. Classification Performance of Different Methods

Performance Rails Elasticsearch Angular.js

TBC TBC R TBC CF TBC TBC R TBC CF TBC TBC R TBC CF

Favg 0.69 0.74 0.71 0.77 0.81 0.78 0.67 0.73 0.69

Improvement (%) - 7.24 2.90 - 5.19 1.30 - 8.96 3.00
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4.3 RQ3: What Are the Typical Review

Patterns Among the Reviewers’

Discussions

We now discuss some of our preliminary quantita-

tive analysis. We used TSHC to automatically classify

all the review comments, based on which we explored

the quantitative characteristics of review comments.

4.3.1 Comments Distribution

Fig.6 shows the percentage of the level-2 subcate-

gories. As a general view, the comments distribu-

tion over the three projects represent similar patterns,

in which most comments are about defect detecting

(L2-2), value affirming (L2-4) and politely responding

(L2-10). Significantly, defect detecting (L2-2) occu-

pies the first place (Rails: 42.5%, Elasticsearch: 50.6%,

Angular.js: 33.1%). This is consistent with previous

studies[3,15] which states that the main purpose of code

review is to find defects. Moreover, the development of

open source projects relies on the voluntary collabora-

tive contribution[29] of thousands of developers. A har-

monious and friendly community environment is benefi-

cial to promote contributors’ enthusiasm which is criti-

cal to the continuous evolution of a project. As a result,

a majority of reviewers never hesitate to react positively

to others’ contribution (L2-10, L2-11) and express their

satisfaction with high-quality pull-requests (L2-4).

Actually, we also explored comments distribution

based on the manually labeled dataset and found it was

similar to that on the automatically labeled dataset.

The distribution difference between the two datasets

is that the manually labeled dataset has more com-

ments of L2-4 and less comments of L2-2 compared with

the automatically labeled dataset. But the difference is

slight and does not affect the distribution outline. As a

result, we only reported our findings on the automati-

cally labeled dataset which has the larger data size and

therefore makes our findings more convincing.

4.3.2 Cost-Free Comments

It is strange that although inspecting code style

(L2-1) and testing code (L2-3) cost reviewers very lit-

tle effort, and do not require too much understand-

ing for code changes, comments of these two categories

are relatively less than others. This is somewhat in-

consistent with the study conducted by Bacchelli and

Bird[15] on Microsoft teams, in which they found code

style (called code improvement in their study) is the

most frequent outcome of code reviews. The reason

for the inconsistence, in our opinion, is the difference

of development environment. In GitHub, contributors

are in a transparent environment and their activities

are visible to everyone[4,8]. Hence, in order to build

and maintain good reputations, contributors usually go

through their code by themselves before submission and

prevent making apparent mistakes[4].

4.3.3 Defects Under Green Tests

We were also curious about why a large percen-

tage of comments focus on detecting defects (L2-2) even

though most of the pull-requests did not raise testing is-

sues (L2-3). After examining again those pull-requests

which received comments of L2-2 but did not receive

comments of L2-3, we found two main factors resulting

in this phenomenon.
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Fig.6. Percentage of the level-2 subcategories.
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One factor is contributors’ unfamiliarity with the

programming language and the APIs, which is shown

in the following example comments.

Example 4. “Just this change is not necessary, it’ll

run validations twice, you can use r.save in the assert

call.”

Example 5. “This will introduce a memory leakage

on system where there are a lot of possible SQLs. Re-

member symbols are not removed from memory from

the garbage collector.”

The other one is the lack of development experience

of some contributors, which is shown in the following

example comments.

Example 6. “This will change the existing behavior

and people may be relying on it so I don’t think it is

safe to change it like this. If we want to change this we

need a better upgrade path, like a global option to let

people to switch the behavior.”

Example 7. “This new class isn’t needed — we can

reuse an existing one.”

These factors tend to produce runnable but “low-

quality” codes which are of less elegance or even break

the compatibility and introduce potential risks. This

reality justifies the necessary of manual code review

even although an increasing number of automatic tools

are coming into being.

4.3.4 Overlooked Convention

Also most projects set specific development conven-

tions which do not require too much effort to follow, and

they are, somehow, overlooked by contributors which

can be seen from the following examples.

Example 8. “Thanks! Could you please add ‘[ci

skip]’ to your commit message to avoid Travis to trig-

ger a build?”

Example 9. “@xxx PR looks good to me. Can you

squash the two commits into one. Fix and test should

go there in a commit. Also please add a change log.

Thanks.”

To better understand this problem, we did a statis-

tical analysis to explore whether this kind of comments

(L2-9) are distributed differently on the roles of con-

tributors (core members or external contributors).

We found that pull-requests submitted by external

contributors receive more comments of L2-9 than those

submitted by core members, which accounts for 83.9%,

60.1%, and 80.7% of the total number in Rails, Elastic-

search, and Angular.js respectively.

Furthermore, we explored how an external develo-

per’s contribution experience affects the possibility of

his/her pull-requests getting comments of L2-9. Fig.7

shows how many the pull-requests that receive com-

ments of L2-9 are created and accumulated during deve-

lopers’ contribution history. It is clear that a considera-

ble proportion of such pull-requests (68.4% in Rails,

75.1% in Elasticsearch, and 91.9% in Angular.js) have

been generated in the first five submissions. Fig.7 il-

lustrates that external contributors are more likely to

submit pull-requests that break project conventions in

their early contributions. Therefore, it is necessary to

make external contributors gain a well understanding

of project conventions in the very early stage.

In fact, most project management teams have pro-

vided contributors with specific guidelines 8○. It seems,

however, that not everyone is willing to go through the

tedious specification before contribution. This may in-

spire GitHub to improve its collaborative mechanism

and offer more efficient development tools. For exam-

ple, it is better to briefly display a clear list of develop-

ment conventions which are edited by the management

team of a project before a developer creates a pull-

request to this project. Another alternative solution

for GitHub is to provide automatic reviewing tools that

can be configured with predefined convention rules and

triggered as a new pull-request is submitted.
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8○http://edgeguides.rubyonrails.org/contributing to ruby on rails.html, Oct. 2017.
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Summary. Most comments are discussing about

code correcting and social interactions. External con-

tributors are more likely to break project conventions in

their early contributions, and their pull-requests might

contain potential issues, even though they have passed

the tests.

5 Threats to Validity

In this section, we discuss threats to construct vali-

dity, internal validity and external validity, which may

affect the results of our study.

Construct Validity. The first threat involves the

taxonomy definition since some of the categories could

be overlapped or missed. To alleviate this problem, we,

together with other experienced developers, randomly

selected review comments and classified them according

to our taxonomy definition. The verification result in

Subsection 3.3 showed that our taxonomy is complete

and does not miss any significant categories.

Secondly, manually labeling thousands of review

comments is a repetitive, time-consuming and boring

task. To get a reliable labeled set, the first author of the

paper was assigned to do this job and we tried our best

to provide him a pleasant work environment. Moreover,

if it has been a long time since the last round of label-

ing work, the first author would revisit the taxonomy

and go through some labeled comments to ensure his

accurate and consistent understanding of his job before

the next round of labeling work proceeds. It is possible

that the incorrect classification of TSHC may affect our

findings even when our model achieved high precision

of 76%∼83%. However, our preliminary quantitative

study is mainly based on the comments distribution on

each category, and wrong classification is not likely to

alter the distribution significantly; therefore our find-

ings are not easily affected by some extent of incorrect

classification.

Internal Validity. There are many machine learn-

ing methods that can be used to solve the classification

problem and the choice of ML algorithm has a direct

impact on the classification performance. We compared

several ML algorithms including linear regression clas-

sifier, adaBoost classifier, random forest classifier, and

SVM, and found that SVM performed better than the

others on classifying review comments. Furthermore,

we also did some necessary parameter optimization.

External Validity. Our findings are based on the

dataset of three open source projects hosted on GitHub.

To increase the generalizability of our research, we

have selected projects with different programming lan-

guages and different application areas. Nevertheless our

dataset is a small sample compared with the total num-

ber of projects in GitHub. Hence, it is not very sure

whether the results can be generalized to all the other

projects hosted on GitHub or those which are hosted

on other platforms.

6 Conclusions

Code review is one of the most significant stages

in pull-based development. It ensures that only high-

quality pull-requests are accepted, based on the in-

depth discussions among reviewers. To comprehen-

sively understand the review topics in the pull-based

model, we first conducted a qualitative study on

three popular open-source software projects hosted on

GitHub and constructed a fine-grained two-level taxon-

omy covering four level-1 categories (code correctness,

PR decision-making, project management, and social

interaction) and 11 level-2 subcategories (e.g., defect

detecting, reviewer assigning, contribution encourag-

ing). Second, we did preliminary quantitative analysis

on a large set of review comments that are labeled by a

two-stage hybrid classification algorithm, TSHC, which

is able to automatically classify review comments by

combining rule-based and machine-learning techniques.

Through the quantitative study, we explored the typi-

cal review patterns. We found that the three projects

present similar comments distribution on each category.

Pull-requests submitted by inexperienced contributors

tend to contain potential issues even though they have

passed the tests. Furthermore, external contributors

are more likely to break project conventions in their

early contributions.

Nevertheless, TSHC performs poorly on a few level-

2 subcategories. More work could be done in the fu-

ture to improve it. We plan to address the shortcom-

ings of our approach by extending the manually labeled

dataset and introducing sentiment analysis. Moreover,

we will try to dig more valuable information (e.g., com-

ment co-occurrence, emotion shift) from the experimen-

tal result in the paper and assist core members to bet-

ter organize the code review process, such as improving

reviewer recommendation, contributor assessment, and

pull-request prioritization.
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