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ABSTRACT
The widespread use of pull-requests boosts the development and

evolution for many open source software projects. However, due
to the parallel and uncoordinated nature of development process
in GitHub, duplicate pull-requests may be submitted by different
contributors to solve the same problem. Duplicate pull-requests
increase the maintenance cost of GitHub, result in the waste of time
spent on the redundant effort of code review, and even frustrate
developers’ willing to offer continuous contribution. In this paper,
we investigate using text information to automatically detect du-
plicate pull-requests in GitHub. For a new-arriving pull-request,
we compare the textual similarity between it and other existing
pull-requests, and then return a candidate list of the most similar
ones. We evaluate our approach on three popular projects hosted in
GitHub, namely Rails, Elasticsearch and Angular.JS. The evaluation
shows that about 55.3% - 71.0% of the duplicates can be found when
we use the combination of title similarity and description similarity.
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1 INTRODUCTION
A critical factor of the rapid development and evolution for many

open source software projects in GitHub is the use of pull-based
development model [5–7, 28]; this model allows any developer
(core members of a project or external developers) to contribute
to a public project by submitting pull-requests. Contributors fork
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(i.e., clone) a fascinating repository and make their changes on the
cloned repository locally without disturbing the original reposi-
tory [5, 28]. On the base of cloned repository, contributors can fix
bugs, add new features, improve documents and etc.. When their
changes are ready to merge back into the main repository, they
create a pull-request to notify the core team of the project to review
the submitted changes [16, 23, 26], which is an important software
quality assurance.

Contributing in pull-based model is a parallel and uncoordinated
process [2, 6, 7]. Therefore, duplicate pull-requests may be cre-
ated by different developers to address exactly the same problem,
especially for the popular projects which attract numerous con-
tributors and receive plenty of pull-requests everyday. Duplicate
pull-requests increase the maintenance cost of GitHub and result
in the waste of time spent on the redundant effort of reviewing
each of them separately. The statistics based on our data reveals
that before a duplicate pull-request is identified, there are on av-
erage 2.6 reviewers participating in the review discussion and 5.2
review comments are generated. Furthermore, contributors often
continuously improve their pull-requests driven by the code review
feedback [12, 26], and therefore late identification of duplicates tend
to lead the contributors to be more frustrated [8] and get doubtful
about the management team when they have paid plenty of effort
in several round of contribution improvements and code reviews,
especially if their pull-requests are superseded as duplicate of the
subsequently created ones.

The current practice is to count on the code reviewers to identify
these duplicate pull-requests manually. Unfortunately, the number
of pull-requests submitted daily, however, can be too large to cope
with for reviewers of popular projects [5, 26]. Moreover, it is not
realistic for reviewers to keep all the historical pull-requests in
mind and compare each of them with the newly-submitted one. As
a result, many duplicate pull-requests cannot be identified in time.
In spite of so much effort that have been spent on the evaluation
of pull-requests [3, 9, 21–23, 27], very few research is conducted
to assist pull-request management. This highlights the need for an
automated tool which can be used to detect duplicate pull-requests
at an early stage.

In this paper, we explored whether text information, that is
textual similarity, can be used to automatically detect duplicate
pull-requests in GitHub. For a given pull-request, we compute the
textual similarity between it and other existing pull-requests, and
then return a candidate list of the most similar ones. Textual infor-
mation of a pull-request consists of two parts: title and description.
Therefore, we investigated the detection performance of title simi-
larity, description similarity and the combined similarity of them
respectively. Based on the test dataset of duplicate pull-requests
that we collected from three popular projects hosted in GitHub,
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namely Rails, Elasticsearch and Angular.JS. We evaluate our ap-
proach in terms of recall-rate. The evaluation result shows that
about 55.3% - 71.0% of the duplicates can be found when we use the
combination of title similarity and description similarity.

To the best of our knowledge, we are the first to investigate how
to automatically detect duplicate pull-requests in GitHub. The key
contributions of this study include the following:
• We propose the problem of detecting duplicate pull-requests
in GitHub. And we construct a dataset1 of duplicate pull-
requests by automatic identification and manual examina-
tion.
• We explore using textual similarity including title similar-
ity, description similarity and their combination to detect
duplicate pull-requests.
• The evaluation result shows textual similarity can be used to
detect 55.3% - 71.0% duplicates which means it has practical
value and can be integrated into the issue tracking systems.

The rest of paper is organized as follows: Section 2 illustrates the
background. Section 3 presents the approach of our study in detail,
and Section 4 elaborates the conducted experiments and reports the
evaluation result. Threats and relatedwork can be found in Section 5
and Section 6. Finally, we draw our conclusion in section 7.

2 BACKGROUND
2.1 Pull-based development model

In GitHub, a growing number of developers contribute to the
open source projects by submitting pull-requests [5, 28]. As illus-
trated in Figure 1, a typical contribution process based on pull-based
development model in GitHub involves the following actions.
• Fork: A contributor can find an interesting project by fol-
lowing several well-known developers and watching their
projects. Before contributing, the contributor has to fork the
original project.
• Edit: Based on the clone repository, the contributor can edit
locally without disturbing the main branch in the original
repository. He is free to do whatever he wants, such as im-
plementing a new feature or fixing bugs.
• Submit: When his work is finished, the contributor submits
the changed codes from the forked repository to its source
by a pull-request. Except for commits, the submitter needs to
provide a title and description to elaborate on the objective
of his pull-request.
• Review: All developers in the community have the chance
to discuss that pull-request in the issue tracker, with the
existence of pull-request description, changed files, and test
results provided by the Continuous Integration (CI) server.
They have to ensure the pull-request does not break the
current runnable state or raise other code defects.
• Update: After receiving the feedback from reviewers, the con-
tributor updates his pull-request by attaching new commits
for another round review.
• Decide: A responsible manager of the core team considers
all the opinions of reviewers and merges or rejects the pull-
request.

1https://www.trustie.net/attachments/download/198047/duppr.txt

Figure 1: Pull-based work flow on GitHub

Pull-based development model lowers the contribution entry
for outside developers and an increasing number of developers
are motivated to participate in the development of open source
software. However, there is a problem with this model when mul-
tiple developers are contributing voluntarily without appropriate
coordination. This results in the probability of duplicates. On the
other hand, although each submitted pull-request in GitHub has
to go through a rigorous process of manual code review, it is not
possible that duplicate pull-requests are detected immediately due
to the huge volume of incoming and active pull-requests. Duplicates
result in redundant effort of not only the initial work before their
submission but also the review and update activities around them
after the submission. The above challenges highlight the need for
an automated tool to detect duplicate pull-requests at an early stage.

2.2 Duplicate pull-requests
Duplicate pull-requests are intended to achieve the same objec-

tive, e.g., fixing the same bug or proposing features of equivalent
function. Multiple pull-requests can be reviewed in parallel. As a
consequence, sometimes a pull-request which is submitted early but
is still in progress may be recognized by reviewers as duplicate to a
subsequent pull-request that has been approved or rejected. In the
paper, for the consistency of study, we always denote the first sub-
mitted pull-request as the master pull-request and the subsequent
pull-requests are referred to the duplicate pull-requests.

For example, Figure 2 shows a duplicate pull-request (Rails #11869)
and its master pull-request (Rails #11496). Both of them intend to re-
solve the problem of association which is based on null relationship.
From the figure, we can that the titles and descriptions of these two
pull-requests share some same words. Textual similarity has been
actually applied by many precious studies [11, 13, 18, 25] to de-
tect duplicate contents in software development (e.g., bug reports).
Therefore, in the paper, we explore whether textual similarity can
be used to detect duplicate pull-requests.
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(a) github.com/rails/rails/pull/11869

(b) github.com/rails/rails/pull/11496

Figure 2: Two duplicate pull-requests of Rails in GitHub.
(a)Pull-request #11869 (b)Pull-request #11496

3 APPROACH
The goal of our work is automatically detecting duplicate pull-

requests. As shown in Figure 3, for a given pull-request, our method
returns a list of candidate duplicate pull-requests by computing and
ranking the textual similarities between it and other history pull-
requests. We determine the textual similarity between pull-requests
from different perspectives: title similarity, description similarity
and their combination. In the following sections, we will elaborate
each step in detail.

Figure 3: Overall framework of our method

3.1 Calculating Textual Similarity
Our method adopts the traditional natural language processing

(NLP) techniques [10] to calculate textual similarity between two
pull-requests. We mainly use the text information from the title
and description of pull-requests.

Preprocessing.We perform the standard preprocessing in the
extracted text including tokenization, stemming and stop words
removal. Different strategies can be applied to split a sentence into
tokens depending on the type of data and application domain [18].
There are some types of text which are split into multiple tokens in
common settings but we want to treat them as a single token in the
context of pull-requests. For example, code paths and hyper links
usually indicate one concept and they should not be divided into
separate words. As a result of that, we use the regular tokenizer
to parse the raw text. The following are some example regular
expressions and the matched text.

• code path
– \w+(?:\:\:\w+)*
– “ActionDispatch::Http::URL”

• number of pull-requests
– \#\d+
– “#10319”

After tokenization, each word will be stemmed to its root form
(e.g., “was” to “be” and “errors” to “error” ) with the help of Porter
stemming algorithm [14]. Finally, common stop words (e.g., “the”,
“we”, “a” ), which appear so frequently that they contribute very few
in distinguishing different documents, will be removed.

Transformation.We then transform the preprocessed text into
multi-dimensional vector which is computable in Vector Space
Model (VSM). A text is represented as:TextVeci = (wi,1,wi,2, ...,wi,v ).
Each dimension of the vector corresponds to an unique word in
the corpus built by all the text. The value of wi,k , the weight of
the k-th item of the vecotr of i-th text, is computed by the TF-IDF
model [20]:

wi,k = t fi,k × id fk (1)

In the above formula, t fi,k denotes the term frequency which is
the frequency of k-th term appearing in the i-th text and id fi,k de-
notes the inverse term frequency which measures the distinguishing
characteristic of a term.

Similarity. After transforming text into vectors, we compute
the similarity between a pair of text using Cosine [10] measure
which is calculated by the following formula:

Sim(i, j ) =
TextVeci ·TextVec j

|TextVeci | |TextVec j |

=

∑m=v
m=1 (wi,m ×w j,m )√∑m=v

m=1 w
2
i,m

√∑m=v
m=1 w

2
j,m

(2)

By applying the this measure, we can obtain two kinds of simi-
larities between two pull-requests: Simt it le (i, j ) and Simdesc (i, j ).
Simt it le (i, j )measures the similarity between titles while Simdesc (i, j )
measures the similarity between descriptions.
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3.2 Ranking Candidate List
After Simt it le , and Simdesc between pull-request pairs are cal-

culated, we are able to retrieve the target pull-requests according
to these two kinds of similarities. To produce the candidate list of
top-k pull-requests for the given pull-request, we use the combined
similarity [25] computed by the following formula.

SimText (i, j ) = Simt it le (i, j ) + Simdesc (i, j ) (3)
In the formula, we use a straightforward heuristic computing

the arithmetic average of Simt it le (i, j ) and Simdesc (i, j ) to get the
final textual similarity which is the most widely used combination
function. Finally, the top-k pull-requests which get the most-high
Sim with the given pull-request will be returned in the candidate
list.

4 EXPERIMENT & EVALUATION
4.1 Experimental Setup

We conducted the case study on three large projects. To increase
the generalization of our study, these three projects are selected
as of different domains and different programming languages. As
shown in Table 1, Rails is a well-known web framework written in
Ruby, Elasticsearch is a search server written in Java, and Angular.js
is a popular front-end framework . Ruby, Java and JavaScript are
three of the top most popular programming languages used on
GitHub. The dataset includes meta data (i.e., title, description) and
review history of pull-requests.

Table 1: Dataset of our experiments

Projects Language Application Area Hosted_at #PR
Rails Ruby Web Framework 2009 18321

Elasticsearch Java Search Server 2010 10683
Angular.js JavaScript Front-end Framework 2010 7371

Wewould like to point out that there is no explicit mark for dupli-
cate pull-requests in GitHub. Hence, we have to first figure out the
duplicates from the historical data and construct a standard dataset
for the subsequent analysis. To achieve this, we hold two criterion:
(a) some reviewer comments that two pull-requests are duplicate
to each other, and (b) other reviewers come to an agreement at this
and close one of them. The construction process consists of two
step: automatic identification and manual examination.

Automatic identification. When reviewers are commenting
on a pull-request, they mention other related pull-requests by leav-
ing a link to them. The following are some example comments
which reference the duplicate pull-request.
• “dup of #xxxx”
• “Closed by https://github.com/rails/rails/pull/13867”
• “This has been addressed in #27768.”

From these comments, we recognize some indicative phrases
such as “dup of”, “in favaor of” and “closed by”. These phrases co-
occur frequently with links in form of pull-request numbers (e.g.,
the first example comment) or hyper links (i.e., the second example
comment). This enables us to match these comments using regular
expressions and the following is part of the expression set:

(dup|addressed|close) (\w+ )?(by|of) (#\d+|http)

If a comment of a pull-request is matched by the regular expres-
sion above, we will extract the referred pull-request with the link
from the comment and construct them as a candidate duplicate
pair. However, not all matched links actually direct to pull-requests,
and are therefore not possible to extract to get the referenced pull-
request. Those invalid links are usually release versions (e.g., “ad-
dressed in rails 5.1” ) and hash codes of a specific commit (e.g., “closed
by efxxxx” ).

Manual examination. Regular expression match may intro-
duce false-positive error. Therefore, we manually examined each
candidate duplicate pair and removed the false matches. Moreover,
we also eliminate duplicate pull-requests pairs that are submitted
by the same author and those whose submitters are aware of the
existence of the corresponding master pull-request and submit the
duplicate pull-request for improvement purpose or just merging
the master pull-request with higher privilege. At last, a dataset of
746 duplicate pull-requests is constructed.

4.2 Evaluation Metrics
To evaluate the performance of our method, we apply the recall-

rate@k metric proposed by Runeson et al. [18] which has been
widely applied by other studies [19, 20]. Formula 4 defines how
recall-rate@k is calculated.

recall-rate@k =
Ndetected
Ntotal

(4)

In the equation,Ndetected is the number of duplicate pull-requests
whose corresponding masters are detected in the candidate list of
top-K pull-reqeusts, while Ntotal is the total number of duplicate
pull-requests that are used for testing. In terms of Recall-rate, de-
tection approaches can be assessed by calculating the percentage of
duplicates which find their masters in the candidate list. Moreover,
the k in recall-rate varies from 1 to 20.

4.3 Experiment Results
Previous work has studied how to use text information to detect

duplicate development tasks such as bug reports. In the paper, we
want to investigate whether the text information can be used to
detect duplicate pull-requests. To answer this question, we con-
duct experiments with several options: using title similarity, using
description similarity, using title similarity and description simi-
larity. Moreover, Runeson et al. [18] suggested that title should be
weighted more than the regular description for its more concise
description. Therefore, we also set an option using doubled title
similarity and description similarity. To measure the performance
of each option, we compute recall-rate@k (k ranges from 1 to 20)
when different options are applied.

In Figure 4, we present the recall-rate@1 to recall-rate@20 scores
achieved by each option on the three software projects. We use
TS , DS , TDS and T2DS as the abbreviations for the four options
respectively (i.e., TS : Title Similarity, DS : Description Similarity,
TDS : Title Similarity + Description Similarity, T 2DS : doubled Title
Similarity + Description Similarity).

From the result we can see that title similarity (TS) always
achieves better performance than description similarity for Rails .
For example, setting the size of top list to 20, title similarity finds
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Figure 4: Detection performance of each kind of similarity measure method. (a) Rails, (b) Elasticsearch, (c) Angular.JS

44.7% duplicates compared with 41.7% which are found by descrip-
tion similarity. Therefore, the improvement of recall-rate@20 of
title similarity is 7.2% for Rails. While for ElasticSearch and Angu-
lar.JS, description similarity is better than title similarity and the
improvements of recall-rate@20 are 12.6% (58.1% vs 51.6%) and 5.4%
(52.7% vs 50.0%) respectively.

We also find that combination of title similarity and descrip-
tion similarity produces higher recall-rate scores than any single
similarity. The recall-rate@20 scores of TDS and T2DS are 55.3%
and 50.3% for Rails, 71.0% and 59.7% for ElasticSearch and 60.7%
and 58.9% for Angular.JS respectively. Obviously, compared with
the single similarity (TS or DS), the improvement of combination
similarity is Significant. However, the surprising is that using dou-
ble title similarity does not achieve better performance than not
using double title similarity which is inconsistent with the finding
of Runeson et al. [18].

We can note that textual similarity can achieve a recall-rate@20
of 55.3% - 71.0%which we believe to be reasonably good. This means
that detecting duplicate pull-requests using textual information has
practical value and can be integrated into the issue tracking systems.

5 THREATS TO VALIDITY
In this section, we discuss some threats to validity which may

affect the experiment results of our study.
Our experiment results are based on some of the popular open

source projects hosted onGitHub. The projects are developed by var-
ious programming languages and are applied in different domains.
However, it is unknown whether our method can be generalized
to all the projects in GitHub, other open source projects hosted on
other platforms.

In addition, our collection approach, which is used to construct
the test dataset, may not find all the duplicate pull-requests because
the regular expressions may not match all the review comments
that indicate a pull-request is duplicate. Moreover, some reviewers
may just close the duplicate pull-requests and do not leave any
comments. In the future, we plan to collect more projects and enrich
our test dataset to further validate the effectiveness of our method.

6 RELATEDWORK
6.1 Duplicate Detection

Although vefy few work studies on duplicate detection of pull-
requests, many work investigate how to recognise duplicate bug
reports. Runeson et al. [18] is one of the first such studies. They
evaluated how NLP techniques support duplicates identification
and found NLP techniques can found 40% marked duplicates. Wang
et al. [25] proposed an approach to detect duplicate bug reports
by comparing the natural language information and execution in-
formation between the new report and the existing reports. Sun et
al. [20] used discriminative models to detect duplicates and their
evaluation on three large software bug repositories showed that
their method achieved improvements compared with methods us-
ing natural language. Nguyen et al. [13] modeled each bug report
as a textual document and took advantage of both IR-based features
and topic-based features to learn the sets of different terms used to
describe the same problems. Lazar et al. [11] made use of a set of new
textual features and trained several binary classification models to
improve the detection performance. Moreover, Zhang et al. [29]
investigated to detect duplicate questions in Stack Overflow. They
measured the similarity of two questions by comparing observable
factors including titles, descriptions, and tags of the questions and
latent factors corresponding to the topic distributions learned from
the descriptions of the questions.

6.2 Pull-request & code review
Although research on pull-requests is in its early stages, sev-

eral relevant studies have been conducted. Gousios et al. [5, 15]
conducted a statistical analysis of millions of pull-requests from
GitHub and analyzed the popularity of pull-requests, the factors
affecting the decision to merge or reject a pull-request, and the
time to merge a pull-request. Tsay et al. [22] examined how social
and technical information are used to evaluate pull-requests. Yu et
al. [28] conducted a quantitative study on pull-request evaluation
in the context of CI. Moreover, Yue et al. [27] proposed an approach
that combines information retrieval and social network analysis to
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recommend potential reviewers. Veen et al. [24] presented PRiori-
tizer, a prototype pull-request prioritization tool, which works to
recommend the top pull-requests the project owner should focus
on.

Code review is employed by many software projects to examine
the change made by others in source codes, find potential defects,
and ensure software quality before they are merged [3]. Traditional
code review, which is also well known as the code inspection pro-
posed by Fagan [4], has been performed since the 1970s. However,
its cumbersome and synchronous characteristics have hampered
its universal application in practice [1]. With the occurrence and
development of VCS and collaboration tools, Modern Code Review
(MCR) [17] is adopted by many software companies and teams.
Different from formal code inspections, MCR is a lightweight mech-
anism [21] that is less time consuming and supported by various
tools. Code review has been widely studied by from several perspec-
tives including automation of revIew task [21], factors influencing
review outcomes [3, 22] and problems found in code review [1].

7 CONCLUSION
In this paper, we conducted a preliminary study on automat-

ically detecting duplicate pull-requests in GitHub using natural
language information. Our method uses title and description of
pull-request to calculate the textual similarity between two pull-
requests and return a candidate list of the most similar one with
the given pull-request. We constructed a test dataset of duplicates
through a semi-automatic way from three popular projects hosted
in GitHub including Rails, Elasticsearch and Angular.JS. The eval-
uation result shows that the combination of title similarity and
description similarity can find about 55.3% - 71.0% of the duplicates.

In the future, we plan to enrich our test dataset and evaluate our
method with datasets from more software projects. In addition, we
would also develop better techniques to improve the detection ef-
fectiveness by considering other information such as code changes.
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