
1

Octopus: a data acquisition system for open source communities

Zhi-Xing Li, Gang Yin, Tao Wang, Yi-Ang Gan, Yun Zhan, Yang Zhang

National Laboratory for Parallel and Distributed Processing,
National University of Defense Technology, 410073, Changsha, China

E-mail: starleelzx@163.com, cloud_zhan@163.com

With the rapid development of open source software (OSS), a lot of reusable software

resources have been produced in open source communities. This leads to spotty quality

and high dispersion of OSS resources so that lots of research works have been conducted

for effective location of reliable software resources. To provide convenient data source

for such studies, this paper introduces Octopus, a data acquisition system for resource of

open source software. Octopus is a robust, scalable and efficient system which consists of

three main modules that have been well decoupled and can be updated at runtime with

flexible configurations. The experiment results show that, Octopus can successfully

collect two kinds of OSS data sources: software production communities and software

consumption communities. The former produce structured software artifacts such as

project profiles while the latter contain rich user feedback such as posts and blogs.

Keywords: Open Source Software; Data Acquisition; Web Crawler.

1. Introduction

With the continuous development of open source software, massive reusable

software resources are available in open source software community [1]. Such

great many of open source software projects provide rich choices for developers,

but it also result in spotty quality and high dispersion [2]. Searching suitable

software of high quality for reuse is a tough job with so many candidate resource

available. To help user locate reliable software resources effectively and

conveniently, more and more researches have been conducted [1][2][8].

Abundant and convenient dataset contribute a lot to such research. With this

goal in mind, this paper proposes Octopus a data acquisition system for resource

of open source software. The common way to build data acquisition system is to

take advantage of web spider and crawl target data [8][9]. Commercial search

engines are usually built on the base of general web spider, but for studies on a

specific topic, focused spider is a better choice [10]. The main functionality of

2

Octopus to crawl data from Internet is achieved by the re-development of

Webmagic (webmagic.io) an open source focused web spider.

There are two kinds of communities in open source software domain:

software production communities and software consumption communities [1].

Structured software artifacts such as source code, documents and issues are

produced in production communities like Openhub (www.openhub.net),

SourceForge (sourceforge.net) and Oschina (www.oschina.net) while user

feedback such as posts and blogs come from consumption communities like

StackOverflow (stackoverflow.com) and CSDN (www.csdn.net). For scalable

purpose, we design a uniform interface to process them equally.

Octopus is designed as a staged process and is configured with external file.

It is a robust , scalable, efficient acquisition system for open source communities.

For now, Octopus has covered 10 software consumption communities (SCC)

and 6 software production communities (SPC).

The rest of paper is organized like this: Section 2 reviews briefly related

work and Section 3 explains the architecture of Octopus. Section 4 discusses the

result and characteristic of Octopus. Section 5 concludes this paper with future

work.

2. Related Work

A lot of research work has been conducted on the problem of data acquisition

for open source communities.

Gousios G et al. [3] proposed GHTorrent a scalable off line mirror of

GitHub’s event streams and persistent data. GHTorrent retrieves raw event

contents, store them in MongoDB collections and replay events on top of an

initial state. It has provided much service to the research focused on the data of

GitHub.

FLOSSmole [4] is originally built by Howison et al. to collect data of open

source software projects hosted on SourceForge. The collected data contains

numbers of downloads, programming language and other metadata of a project.

For now, FLOSSmole has included much more open source software

repositories.

S Bajracharya present Sourcerer [5] to gather Java projects from

SourceForge and Apache. It employs the structural information like reference in

source code, the dependences between libraries and so on to achieve large scale

source code indexing and searching.

BlackDuck [6] a massive open source knowledge base is built by Black

Duck. It inspects thousands of open source sites and collects millions of open

 3

source projects. Upon this they also build a code search engine Koders and an

open source software community OpenHub.

Most of these works focus on the software production communities, and

some of them even restrict themselves to specific topic. Little work has been

paid on the user feedback in consumption communities. This limit the

application scope of their dataset. Different from them, Octopus try to include

both kinds of communities as many as possible and provide abundant and

convenient dataset for crowd wisdom mining in open source communities [1].

3. Architecture of Octopus

3.1. Overview

The architecture of Octopus is shown in Figure 1. The main process of Octopus

is divided into three modules: list page crawler, URL extractor, and detail page

crawler. These three parts are decoupled with database and synchronized with

the help of monitor so that they can run in parallel. The underlying programming

model of crawler is the re-development of WebMagic an open source web spider.

Fig. 1. The architecture of Octopus

The job of Configure manager is to load various configure files and

influence several behaviors of Octopus. The rule to generate URL of list page,

the rate to crawl some specific website, the rule to extract URL of detail page

from list page, etc. are all configurable with external xml file. To make Octopus

more friendly and tenacious, protector is designed for rate control and

4

alternation of related parameter which will be taken into consideration unless it

is absolutely necessary [11]. MyBatis (www.mybatis.org) a first class

persistence framework is used to do the data persistence. In the following

sections, the implementation of Octopus will be introduced in detail.

3.2. List page crawler

As discussed, Octopus is efficient because of its precise location of target

resource. Unlike traditional focused web crawler filter valuable information

from crawled data[9], Octopus only crawl needed resource. Like figure 2 shows,

most sites relevant to open source software show their content in list pages.

Fig. 2. List page of StackOverflow

The first step of Octopus is to crawl these list pages. The URLs of list page

in a site have the same regular expression: prefix_url:page_number:postfix_url.

The prefix_url and postfix_url is invariable for a specific site and page_number

is an incremental number in the corresponding range. We call this type of

regular expression as 3I (invariable-incremental-invariable) regular expression.

In StackOverflow, these parameters is “stackoverflow.com/questions?page=”, a

number between (1,801956) for now, and a null string respectively. With this

regularization, after start index and end index of page_number have been

determined, it is convenient to construct all the available URLs of list page

 5

automatically by assembling the three parts which is read from external xml file

specifying the rule of URLs of list page in a specific site.

To stay updated on new data produced anytime, we give Octopus the ability

to be in different mode: mirror mode and increment mode. In the former mode

Octopus crawl the history data in one site and in the later mode Octopus crawl

the new data produced since last crawl time. For one site, Octopus start to

collect data in mirror mode, and change into increment mode after all the history

data has been collected. When it is in increment mode, Octopus visit the website

periodically according to the update rate which is decided manually with a

conservative estimate under actual situation. The general flow chart of list page

crawler is illustrated in figure 3. They both call the common modules to

assemble URL and download and store pages.

Fig. 3. The flow chart of list page crawler

For forum websites, there is no 3I regular expression of the URL for several

subsections. To treat forum websites equally with other sites like StackOverflow,

we model a website as a two-depth tree structure where the root node indicates

the main site and leaf nodes indicate subsites. For those websites that have 3I

regular expression of the URL, like StackOverflow and OpenHub, there is only

one leaf node, and for those websites that don’t have, the number of leaf nodes

is the number of their subsites. List page crawler will process each subsite in a

round-robin schedule.

6

3.3. Detail page crawler

Like figure 4 shows, URL extractor listens to the result of list page crawler with

the help of monitor. Once new data has come, URL extractor will process the

html content of list page and extract the URLs contained in the page. To extract

specific URL from a web page, lots of method has been proposed. We apply

Jsoup [12] to do this job which is a powerful and easy-to-use HTML parsing

tool. With Jsoup, CSSPath can be used to select any specific item in html file.

The format of the grammar of CSSPath is like this : “#postlist>h1>a”. The

character “#” before a string indicates the string is an id of some item in a html

and character “>” indicates the item before it is the parent of the item behind it.

The CSSPath expression of an item in html can be many and varied, but the one

that starts with some item specified with id and has a short length is a better one.

Fig. 4. Interaction between modules

The final step of Octopus is to crawl the detail pages which is our real goal.

Like URL extractor listens to list page crawler, detail page crawler listens to

URL extractor. Because the URLs of detail page have been extracted to local

database, there is no tough job for detail page crawler. What it need to do is just

download the detail page according to corresponding URL and persist it.

3.4. Protector

Some websites have made a set of criteria to resist web crawler[11]. Sometimes

these criteria are so rigorous that crawler can download a very little data against

 7

them. There are many ways to make a web crawler smarter to overcome these

restricts. Websites usually recognize a web crawler with its User Agent. In

HTTP, the User Agent is often used for content negotiation, where the server

end response with suitable content[12]. Web crawler need to identify itself in

User Agent, such as Baidu’s User Agent is “Mozilla/5.0 (compatible;

Baiduspider/2.0; +http://www.baidu.com/search/spider.html)”. For this reason,

many designers build a User Agent pool which containing plenty of available

User Agents. When their crawler issues a request it select a User Agent

randomly from the pool to act as a famous web crawler or web browser. Another

way to decrease the risk of being forbidden is to switch the IP of the server in

which the crawler runs in. Websites also analyzes the IP traffic over an interval

to decide whether a specific IP is requesting too much and restrict it if so.

Dynamic IP switch can be achieved by IP proxy or dial-up connection. But we

don’t adopt these rude ways to improve the performance of Octopus. Reducing

the crawling speed is the most friendly way.

In order to prevent disturbing the performance of target communities, we set

Octopus at a friendly state to collect data. First, the crawling speed of Octopus

is at a very low level. We set a range of crawl period in advance to constraint it.

This range is a conservative estimate which can satisfy our need and don’t

bother the target communities at the same time. Every time, after Octopus finish

downloading a page, it choose a value between that period range and sleep

corresponding time to wait for next round. To better keeping Octopus running at

an continuous state, we let it work intermittently. After Octopus working for a

short interval, it will go into hibernation for a relatively long time. Both work

interval and hibernation interval are random value generated in a specific range.

4. Results and discussion

In this Section, we present the result of the proposed system and the

characteristic analysis of Octopus.

4.1. Results

Until now, Octopus has covered 10 software consumption communities

including StackOverflow, CSDN, 51CTO, etc. and 6 software production

communities including SourceForge, OpenHub, Apache, etc.. The data we have

collected is shown in table 1.

For software production communities, data scale means the number of open

source software project that one website have hosted, for software consumption

communities data scale is the number of posts or blogs that one website has

8

produced. In some communities, like CSDN, there are several individual sub-

communities. The data scale is the total number of all the sub-communities.

Table 1. Collecting result of Octopus

Website Type Data scale Website Type Data scale

StackOverflow SCC 3,351,477 CodeProject SCC 5,296

CSDN SCC 1,063,453 LinuxTone SCC 5,552

Cnblogs SCC 170,086 OpehHub SPC 660,992

51CTO SCC 29,429 SourceForge SPC 465,650

Dewen SCC 12,311 Oschina SPC 40,192

PHPChina SCC 47,505 Freecode SPC 40,716

ITEye blog SCC 4,582 Gna SPC 1,455

Slashdot SCC 2,172 Apache SPC 248

As we stated, Octopus collects data from open source communities friendly.

It follows the robots exclusion protocol. Robots exclusion protocol, also known

as simply robots.txt, is a standard used by websites to communicate with web

crawlers to specify which resources of the website should not be processed or

scanned. When Octopus crawls, it leaves out the disallowed resources and don’t

violate their privacy. Because of friendly strategy, Octopus works in good

condition and hasn’t been forbidden by any website.

4.2. Characteristic analysis

Octopus is a scalable, robust and efficient data acquisition system. In the

following, we will explain these characteristic.

(1) Scalable: Octopus is configured with external xml file. The rules to generate

URL of list page, extract URL of detail page form list page, and control of

the work rate are all defined in configure file. This provides a plugin-based

structure for adding new communities. The only effort to include another

community is just to write a new configure file and specify all these rules.

(2) Robust: Open source communities grow at amazing speed and the structure

and layout of their web page are often changing. It is difficult to identify

whether an error is created in the process of extraction or other valuable

information is included in changed pages. To handle this problem, Octopus

is designed as a staged process including list page crawling, URL extract,

and detail page crawling. These three modules are decoupled with database,

and their outputs have all been stored into database. Under this design, we

can redo any extraction when error has been found or extract extra valuable

 9

information from pages stored in database without network access and

crawl them again which is the most time-consuming operation.

(3) Efficient: Unlike traditional focused web crawler filter valuable information

from crawled data, Octopus only crawl needed resource. Detail page is

downloaded with the URL extracted from list page. There is no irrelevant

data for Octopus to collect, so it saves much time on identify and filter.

All these characteristic of Octopus make it a perfect choice for data

acquisition of open source communities.

5. Conclusion and future work

In this paper, we proposed Octopus a data acquisition system for the resource of

open source software. With Octopus, we have collect 6 software production

communities and 10 software consumption communities. The actual running

state shows that Octopus is a robust, scalable, efficient system. However, there

are some limitations need to be improved. As we have said, there are more and

more open source communities, so it is a meaningful work in the future to

discover unknown websites automatically that are relevant to open source

software.

What’s more, to help more empirical software engineering studies and

satisfy their need on data acquisition of open source communities, we plan to

offer both public dataset and online query interface.

Acknowledgments

Lots of thanks should be given to OSSEAN team members, especially to Xunhui

Zhang and Li Li for their valuable help. This research is supported by the

National High Technology Research and Development Program of China (Grant

No.2012AA011201) and National Science Foundation of China (Grant No.

61432020 and 61472430).

References

1. Yin G, Wang T, Wang H, et al. OSSEAN: Mining Crowd Wisdom in Open

Source Communities[C]//Service-Oriented System Engineering (SOSE),

2015 IEEE Symposium on. IEEE, 2015: 367-371.

2. Fan Q, Wang H, Yin G, et al. Ranking open source software based on

crowd wisdom[C]//Software Engineering and Service Science (ICSESS),

2015 6th IEEE International Conference on. IEEE, 2015: 966-972

10

3. Gousios G, Spinellis D. GHTorrent: GitHub's data from a

firehose[C]//Mining software repositories (msr), 2012 9th ieee working

conference on. IEEE, 2012: 12-21.

4. Howison J, Conklin M, Crowston K. FLOSSmole: A collaborative

repository for FLOSS research data and analyses[J]. International Journal of

Information Technology and Web Engineering (IJITWE), 2006, 1(3): 17-26.

5. Linstead E, Bajracharya S, Ngo T, et al. Sourcerer: mining and searching

internet-scale software repositories[J]. Data Mining and Knowledge

Discovery, 2009, 18(2): 300-336.

6. Bagley C E, Lane D. Black Duck Software. Case Study[J]. Harvard

Business School Publishing, 2006.

7. Vasilescu B, Filkov V, Serebrenik A. StackOverflow and GitHub:

Associations between software development and crowdsourced

knowledge[C]//Social Computing (SocialCom), 2013 International

Conference on. IEEE, 2013: 188-195.

8. Heydon A, Najork M. Mercator: A scalable, extensible web crawler[J].

World Wide Web, 1999, 2(4): 219-229.

9. Thelwall M. A web crawler design for data mining[J]. Journal of

Information Science, 2001, 27(5): 319-325.

10. S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: a new

approach to topic-specific Web resource discovery. Computer Networks,

31(11-16):1623−1640, 1999.

11. Fox V, Camp A A, Ibel M, et al. System and method for enabling website

owners to manage crawl rate in a website indexing system: U.S. Patent

7,599,920[P]. 2009-10-6.

12. Hedley J. jsoup: Java html parser[J]. 2010.

13. Fielding R, Gettys J, Mogul J, et al. Hypertext transfer protocol--

HTTP/1.1[R]. 1999.

