
1

Redundancy, Context, and Preference: An
Empirical Study of Duplicate Pull Requests in

OSS Projects
Zhixing Li, Yue Yu*, Minghui Zhou, Tao Wang, Gang Yin, Long Lan, and Huaimin Wang

Abstract—OSS projects are being developed by globally distributed contributors, who often collaborate through the pull-based model
today. While this model lowers the barrier to entry for OSS developers by synthesizing, automating and optimizing the contribution
process, coordination among an increasing number of contributors remains as a challenge due to the asynchronous and self-organized
nature of distributed development. In particular, duplicate contributions, where multiple different contributors unintentionally submit
duplicate pull requests to achieve the same goal, are an elusive problem that may waste effort in automated testing, code review and
software maintenance. While the issue of duplicate pull requests has been highlighted, to what extent duplicate pull requests affect the
development in OSS communities has not been well investigated. In this paper, we conduct a mixed-approach study to bridge this gap.
Based on a comprehensive dataset constructed from 26 popular GitHub projects, we obtain the following findings: (a) Duplicate pull
requests result in redundant human and computing resources, exerting a significant impact on the contribution and evaluation process.
(b) Contributors’ inappropriate working patterns and the drawbacks of their collaborating environment might result in duplicate pull
requests. (c) Compared to non-duplicate pull requests, duplicate pull requests have significantly different features, e.g., being
submitted by inexperienced contributors, being fixing bugs, touching cold files, and solving tracked issues. (d) Integrators choosing
between duplicate pull requests prefer to accept those with early submission time, accurate and high-quality implementation, broad
coverage, test code, high maturity, deep discussion, and active response. Finally, actionable suggestions and implications are
proposed for OSS practitioners.

Index Terms—Duplicate pull requests, pull-based development model, distributed collaboration, social coding

F

1 INTRODUCTION

The success of many community-based Open Source Soft-
ware (OSS) projects relies heavily on a large number of
volunteer developers [35], [64], [84], [86], who are geograph-
ically distributed and collaborate online with others from
all over the world [43], [58]. Compared to the traditional
email-based contribution submission [25], the pull-based
model [40] on modern collaborative coding platforms (e.g.,
GitHub [9] and GitLab [10]) supports a more efficient col-
laboration process [115], by coupling code repository with
issue tracking, review discussion and continuous integra-
tion, delivery and deployment [79], [110]. Consequently, an
increasing number of OSS projects are adopting the syn-
thesized pull-based mechanism, which helps them improve
their productivity [98] and attract more contributors [108].

However, while the increased number of contributors in
large-scale software development leads to more innovations

• Zhixing Li, Yue Yu, Tao Wang, Gang Yin and Huaimin Wang are with
the Key Laboratory of Parallel and Distributed Computing, College of
Computer, National University of Defense Technology, Changsha, China.
E-mail: {lizhixing15, yuyue, taowang2005, yingang,
hmwang}@nudt.edu.cn

• Minghui Zhou is with the School of Electronics Engineering and Com-
puter Science, Peking University, Beijing, China.
E-mail: zhmh@pku.edu.cn

• Long Lan, Minghui Zhou and Yue Yu are with the Peng Cheng Labora-
tory, Shenzhen, China.
E-mail: long.lan@pcl.ac.cn

*Corresponding author: Yue Yu, yuyue@nudt.edu.cn

(e.g., unique ideas and inspiring solutions), it also results in
severe coordination challenges [103]. Currently, one of the
typical coordination problems in pull-based development is
duplicate work [85], [114], due to the asynchronous nature
of loosely self-organized collaboration [26], [84] in OSS com-
munities. On the one hand, it is unreasonable for a core team
to arrange and assign external contributors to carry out ev-
ery specific task under the open source model [53], [54] (i.e.,
external contributors are mainly motivated by interest and
intellectual stimulation derived from writing code, rather
than requirements or assignments). On the other hand, it is
impractical to expect external developers (especially new-
comers and occasional contributors) to deeply understand
the development progress of the OSS projects [41], [56], [83]
before submitting patches. Thus, OSS developers involved
in the pull-based model submit duplicate pull requests (akin
to duplicate bug reports [24]), even though they collaborate
on modern social coding platforms (e.g., GitHub) with rel-
atively transparent [37], [94] and centralized [40] working
environments. The recent study by Zhou et al. [114] has
showed that complete or partial duplication is pervasive in
OSS projects and particularly severe in some large projects
(max 51%, mean 3.4%).

Notably, a large part of duplicates are not submitted in-
tentionally to provide different or better solutions. Instead,
contributors submit duplicates unintentionally because of
misinformation and unawareness of a project’s status [41],
[114]. In practice, duplicate pull requests may cause sub-
stantial friction among external contributors and core inte-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

grators; these duplicates are an common reason for direct
rejection [41], [85] without any chance for improvement,
which frustrates contributors and discourages them from
contributing further. Moreover, redundant work is more
likely to increase costs during the evaluation and mainte-
nance stages assembled with DevOps tools compared to
traditional development models. For example, continuous
integration tools (Travis-CI [98], [104]) automatically merge
every newly received pull request into a testing branch,
build the project and run existing test suites, so computing
resources are wasted if integrators do not discover the du-
plicates and stop the automation process in time. Therefore,
avoiding duplicate pull requests is becoming a realistic
demand for OSS management, e.g., scikit-learn provides a
special note in the contributing guideline “To avoid duplicat-
ing work, it is highly advised that you search through the issue
tracker and the PR list. If in doubt about duplicated work, or if
you want to work on a non-trivial feature, its recommended to
first open an issue in the issue tracker to get some feedbacks from
core developers.” [5]

Existing work has highlighted the problems of dupli-
cate pull requests [40], [85], [114] (e.g., inefficiency and
redundant development), and proposed ways to detect du-
plicates [57], [73]. However, the nature of duplicate pull
requests, particularly the fine-grained resources that are
wasted by the duplicates, the context in which duplicates
occur, and the features that distinguish merged duplicates
from their counterparts, have rarely been investigated. Un-
derstanding these questions would help mitigate the threats
brought by duplicate pull requests and improve software
productivity.

Therefore, we bridge the gap on the investigation of du-
plicate pull requests in this study. We extend our previously
collected duplicate pull request dataset [106] by adding
change details, review history, and integrators’ choice. Based
on the dataset, we analyze the redundancies of duplicate
pull requests in the development and evaluation stages,
explore the context in which duplicates occur and examine
the difference between duplicate and non-duplicate pull
requests. We further investigate the reasons why among
a group of duplicates, a pull request is more likely to be
accepted by an integrator. Finally, we propose actionable
suggestions for OSS communities.

The main contributions of this paper are summarized as
follows:

• It presents empirical evidence on the impact of dupli-
cate pull requests on development effort and review
process. The findings will help software engineering
researchers and practitioners better understand the
threats of duplicate pull requests.

• It reveals the context of duplicate pull requests, high-
lighting the inappropriateness of OSS contributors’
work patterns and the shortcomings of the current OSS
collaboration environment. These findings can guide
developers to avoid redundant effort on the same task.

• It provides quantitative insights into the difference be-
tween duplicate and non-duplicate pull requests, which
can offer useful guidance for automatic duplicate detec-
tion.

• It summarizes the characteristics of the accepted pull
requests compared to those of their duplicate coun-

terparts, which will provide actionable suggestions for
inexperienced integrators in duplicate selection.

The rest of the paper is organized as follows: Section 2
introduces the background and research questions. Section 3
presents the dataset used in this study. Sections 4, 5 and
6 report the experimental results and findings. Section 7
provides further discussion and proposes actionable sug-
gestions and implications for OSS practitioners. Section 8
discusses the threats to the validity of the study. Finally, we
draw conclusions in Section 9.

2 BACKGROUND AND RESEARCH QUESTIONS

2.1 Pull-based development
In the global collaboration of OSS projects, a variety
of tools [115], including mailing lists, bug trackers (e.g.,
Bugzilla [3]), and source code version control systems (e.g.,
SVN and Git), have been widely used to facilitate collabo-
ration processes. The pull-based development model is the
latest paradigm [40] for distributed development; it inte-
grates code base with task management, code review and
DevOps toolset. Compared with the traditional patch-based
model, the pull-based model provides OSS developers with
centralization of information, integration of tools, and pro-
cess automation, thus simplifying the participation process
and lowering the entry barrier for contributors [40], [98].
In addition, the pull-based model separates the developers
into two teams, i.e., the external contributor team, which
does not have the write access to the repository and submits
contributions via pull requests, and the core integrator team,
which is responsible for assessing and integrating the pull
requests sent from external contributors. This decoupling of
effort stimulates and enhances the parallel and distributed
collaboration among OSS developers [115]. As shown in Fig-
ure 1, the pull-based development workflow [31] includes
the following steps.

a) Fork: For a contributor (Bob or alice) in GitHub, the
first step to contribute to a project is forking its original
repository. As a result, the contributor owns a copy of
the repository containing all the source code and commit
histories under her/his GitHub account. Both the original
repository and the forked repository are hosted on the
servers of GitHub.

b) Clone: Before the contributor engages in actual work,
s/he must clone the forked repository to her/his local com-
puter and makes code changes based on the local repository.

c) Edit: The contributor can then fix bugs or add new
features by editing the local repositories. Moreover, the con-
tributor is recommended to always create a topic branch sep-
arated from the master branch and to commit local changes
to that topic branch.

d) Sync: It is possible that the local repository becomes
out of date compared with the original repository. To make
it easy for project integrators to merge the local changes
cleanly, the contributor is expected first to sync the latest
commits from the original repository and handle the possi-
ble merge conflicts.

e) Push: The contributor then pushes the local changes
to the forked repository. The forked repository acts as a
transfer station of the local changes from the local repository
to the original repository.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

b. Clone
g. Evaluation

Local

Online

Locale. Push

c. Edit

d. Sync

f. Submit f. Submit

d. SyncLocal Repository

c. Edit

b. Clone

Bob Alice

Forked Repository

Pull-request queue

Local Repository

Forked Repository

e. Push

Original Repository

Fig. 1: The workflow of the pull-based development model.

f) Submit: Based on the forked repository, the contributor
issues a pull request to notify the project integrators to
merge (i.e., pull) the pushed commits. The pull request
consists of a title and a description, which are used as a
straightforward elaboration of the contained commits. All
pull requests submitted to a specific project are maintained
in a queue (i.e. the issue tracker), and each developer can
check the status and review histories of the pull requests.

g) Evaluation: To ensure that the submitted changes do
not contain defects and adhere to project conventions, the
project integrators and other community developers who
are interested in the project discuss the appropriateness and
quality of the pushed changes. Finally, the integrators reach
an agreement on whether to accept the changes after several
rounds of discussion.

2.2 Evaluation and decision of OSS code contributions
The evaluation and decision of OSS contributions is a
comprehensive process [93], [98], [107], in which the code
reviewers would consider various factors. Previous studies
have attempted to use quantitative methods to uncover the
characteristics of accepted contributions or use qualitative
methods to explore the factors that integrators examine
when making decisions. Those studies provide a good
guidance on which factors should be considered as controls
when we analyze the characteristics of and integrators’
preference among duplicate pull requests.

Characteristics of accepted contributions. Rigby et al. [76]
analyzed the patches submitted to the Apache server
project, and found that patches of small size are more likely
to be accepted than large ones in that project. The similar
finding was also reported by Weissgerber et al. [101] in their
study on two other OSS projects. Jiang et al. [47] conducted
a case study on the Linux kernel project, which showed that
patches submitted by experienced developers, patches of
high maturity, and patches changing popular subsystems
are more likely to be accepted. Baysal et al. [20] also found

that developer’s experience has a positive effect on patch
acceptance in the WebKit and Google Blink projects. In the
pull request model specifically, Gousios et al. [40] found
that the hotness of project area is the dominating factor
affecting pull request acceptance. Tsay et al. [93] investigated
the effects of both technical and social factors on pull re-
quest acceptance. Their findings showed that stronger social
connection between the pull request author and integrators
can increase the likelihood of pull request acceptance. Yu et
al. [108] investigated pull request evaluation in the context
of CI (continuous integration). They found that CI testing
results significantly influence the outcome of pull request
review and the pull requests failing CI tests have a high
likelihood of rejection. Kononenko et al. [52] studied the
pull requests submitted to a successful commercial project.
Their analysis results presented that patch size, discussion
length, and authors’ experience and affiliation are important
factors affecting pull request acceptance in that project. A
recent study conducted by Zou et al. [116] showed that pull
requests with larger code style inconsistency are more likely
to be rejected.

Factors that integrators examine when making decisions.
Rigby et al. [77] interviewed with nine core developers from
the Apache server project on why they rejected a patch.
Although technical issue is the dominating reason, the re-
ported reasons also include project scope and other political
issues. Pham et al. [68] interviewed with project owners
from GitHub, and found that many factors are considered
by project owners when evaluating contributions, e.g., the
trustworthiness of contributor and the size, type and target
of changes. Tsay et al. [94] analyzed integrators’ comments
and decisions on highly discussed pull requests. They found
that integrators are usually polite to new contributors for
social encouragement, and integrators’ decisions can be
affected by community support. Gousios et al. [42] sur-
veyed hundreds of integrators from GitHub on how they
decide whether to accept a pull request. Their survey results

4

showed that the most frequently mentioned factors are
contribution quality, adherence to project norm, and testing
results. Tao et al. [89] analyzed the rejected patches from
Eclipse and Mozilla, and derived a list of reasons for patch
rejection, e.g., compilation errors, test failures, and incom-
plete fix. Kononenko et al. [51] surveyed core developers
from the project Mozilla and asked them about the top
factors affecting the decision of code review. They found
that the experience of developers receives the overwhelming
number of positive answers. In a recent study, Ford et al. [39]
investigated the pull request review process on the basis of
an eye-tracker dataset collected from direct observation of
reviewers’ decision making. Interestingly, they found that
developers reviewing code contributions in GitHub actually
examined the social signals from profile pages (e.g., avatar
image) more than they reported.

2.3 Duplicates in community-based collaboration

Duplicate efforts, including duplicate bug reports, duplicate
questions, and, recently, duplicate pull requests have been
studied in the literature. Studies have mainly focused on
revealing the threats in duplicates, and proposed methods
to detect and remove duplicates.

Duplicate bug reports. Many OSS projects incorporate bug
trackers so that developers and users can report the bugs
they have encountered [78], [100]. From Bugzilla to GitHub
issue system [2], bug tracking systems have become more
lightweight, which makes it easier to submit bug reports.
Consequently, popular OSS projects can receive hundreds of
bug reports from the community every day [87]. However,
because the reporting process is uncoordinated, some bugs
might be reported multiple times by different developers.
For example, duplicate issues account for 36% and 24%
of all reported issues in Gnome and Mozilla [112], respec-
tively, and consume considerable effort from developers
to confirm. Meanwhile, researchers have proposed vari-
ous methods to automatically detect duplicate bug reports.
Most of them used similarity-based methods that compute
the similarity between a given bug report and previously
submitted reports based on various information, includ-
ing natural language text [78], [100], execution trace [100],
categorical features of bugs [87]. Other work has used a
machine learning-based classifier [55], [88] and a topic-
based model [65] to improve detection performance. It is
also interesting to observe that duplicates may attract less
attention and consume less effort. For example, Zhou and
Mockus found that the issues resolved with FIXED tend to
have more comments than other issues, and issues with res-
olution DUPLICATE tend to have the least comments [112].

Duplicate questions. Stack Overflow [13] is currently the
most popular programming Q&A site where developers ask
and answer questions related to software development and
maintenance [91]. In Stack Overflow, developers can vote on
the quality of any question and answer, and they can gain
reputation for valued contributions. Since its founding in
2008, Stack Overflow has accumulated 20 million questions
and answers and attracted millions of visitors each month.
Because of the large user base, Stack Overflow also faces
the challenge of receiving duplicate questions posted by

different developers, despite of its explicit suggestion that
developers conduct a search first before posting a question.
Prior studies have investigated the detection of duplicate
questions in Stack Overflow. Zhang et al. [111] computed
the similarity between two questions based on the titles,
descriptions and tags of the questions and latent topic
distributions, and they recommended the most similar ques-
tions for a given question. To improve detection accuracy,
Mizobuchi et al. [62] used word embedding to overcome
the problem of word ambiguities and catch up new tech-
nical words. Zhang et al. [109] leveraged continuous word
vectors, topic model features and frequent phrases pairs to
capture semantic similarities between questions. Moreover,
Mizobuchi et al. [17] investigated why duplicate questions
are submitted and found that not searching for the questions
is the most frequent reason. However, submitting questions
is significantly different from submitting pull requests in
both the form and the process.

Duplicate pull requests. Figure 2 shows an example of
a pair of duplicate pull requests, both of which replace
function empty? with any? for better readability. Duplicate
pull requests both go through the normal evaluation process
until their duplicate relation is identified by the reviewers.
Prior studies have reported that duplicate pull requests are
a pervasive and severe problem that affects development
efficiency [85], [114]. Gousios et al. [40] found that more than
half of sampling pull requests were rejected due to non-
technical reasons and duplication is one of the major prob-
lems. Steinmacher et al. [85] conducted a survey with the
quasi-contributors to obtain their perspectives on reasons
for pull request nonacceptance, and duplication was the
most common reason mentioned by the quasi-contributors.
Furthermore, to help reviewers find duplicate pull requests
in a timely manner, researchers [57], [73] have proposed
methods to automatically recommend similar pull requests.
In addition, Zhou et al. [114] explored the weak evidence
that discussing or claiming an issue before submitting a
pull request correlates with a lower risk of duplicate work.
In brief, the above studies have revealed the threats in
duplicate pull requests and proposed automatic detection
methods for duplicates, but to what extent duplicate pull
requests affect the OSS development, the context in which
duplicates occur and integrators’ choice between duplicates
remain unclear.

2.4 Goals and research questions
In this study, we aim to better understand the mechanism
of distributed collaboration with pull requests, and to avoid
duplication and redundancy in an actionable and effective
way. In particular, the main goals of the paper are as follows.
Reveal the impact of duplicates. We aim to obtain quan-
titative evidence of the impacts of duplicate pull requests
on the contribution and evaluation process to more clearly
reveal the inefficiency of redundant development.
Guide OSS practitioners. We hope our study can guide
OSS contributors to improve their work patterns and avoid
unintentional redundant efforts on the same task. Moreover,
we expect to help integrators learn from the practices in
dealing with duplicates and make more informed decisions
about choosing between duplicates.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

https://github.com/rails/rails/pull/5273 https://github.com/rails/rails/pull/5279

Description

Title

Fig. 2: An example of a pair of duplicate pull requests.

Inspire tool design. We also hope our findings can inspire
the OSS community and researchers and provide some
insight into how to design and develop mechanisms and
tools to assist developers in avoiding, detecting, managing,
and handling duplicate pull requests more effectively and
efficiently.

To achieve our goals, we address the following research
questions.

RQ1: How much effort do duplicate pull requests con-
sume, and to what extent do they delay the review process?

Motivation: Duplicate pull requests submitted by multiple
different developers are usually evaluated through the same
rigorous review process as original ones. As a result, du-
plicate pull requests waste resources spent on separate and
redundant programming and evaluation efforts. We attempt
to quantify the redundant effort spent on duplicate pull
requests.

RQ2: What is the context in which duplicate pull requests
occur?

Motivation: As reported in prior studies [40], [98], [115],
the pull-based development model is associated with
higher contribution effectiveness than traditional patch-
based model in terms of activity transparency and infor-
mation centralization. Nevertheless, contributors are still at
risk of conducting redundant development. Hence, we aim
to reveal the practical factors resulting in duplicate pull
requests.

RQ3: Which duplicate pull requests are more likely than
their counterparts to be accepted?

Motivation: Prior research [42], [94] has studied the factors
that should be examined when integrators decide whether
to accept an individual pull request. However, little is
known about integrators’ preference for what kind of dupli-
cate pull requests should be accepted. We hope to determine
the characteristics of accepted duplicates compared to those
of their counterparts and summarize the common practices
of duplicate selection for integrators.

3 DATASET

In this study, we leverage our previous dataset DupPR [106],
which contains the duplicate relations among pull requests
and the profiles and review comments of pull requests from
26 popular OSS projects hosted on GitHub. We also extend
the dataset by adding complementary data, including code
commits, check statuses of DevOps tools and contribution
histories of developers.

3.1 DupPR basic dataset

In our prior work [106], we have built an unique dataset
of more than 2,000 pairs of duplicate pull requests (called
DupPR [7]) by analyzing the review comments from 26
popular OSS projects hosted on GitHub. Each pair of du-
plicates in DupPR is represented in a quaternion as <proj,
pr1, pr2, idtf_cmt> (pr1 was submitted before pr2).
Item proj indicates the project (e.g., rails/rails) that the
duplicate pull requests belong to. Items pr1 and pr2 are the
tracking numbers of the two pull requests, respectively. Item
idn_cmt is a review comment of either pr1 or pr2, which
is used by reviewers to state the duplicate relation between
pr1 and pr2. The dataset meant to only contain the acci-
dental duplicates of which all the authors were not aware of
the other similar pull requests when creating their own. In
order to increase the accuracy of this study, we recheck the
dataset again and filter out the intentional duplicates that
were not found before. Specifically, we omit duplicates from
the dataset when they fit one of the following criteria: i)
The authors’ discussion on the associated issue reveals that
the duplication was on purpose. A representative comment
indicating intentional duplication is “I saw your PR and there
wasn’t any activity or follow up in that from last 18 days, [so I
create a new one.]” 1; ii) The submitter of pr2 has performed
actions on pr1, including commenting, assigning reviewers
and adding labels, which clearly indicates that s/he was
aware of pr1 before submitting her/his own one; and iii)
The author of pr2 immediately (< 1 min) mentioned pr1
after creating pr2, which means that the author might

1. The sources of pull requests, issues and comments cited in this pa-
per can be found online at https://github.com/whystar/DupPR-cited

6

already know that pull request before. Overall, we eliminate
330 pairs from DupPR.

A pull request might be duplicate of more than one
pull request. Therefore, in this study, we organize a
group of duplicate pull requests in a tuple structure <
dup1, dup2, dup3, ..., dupn> in which the items are sorted
by their submission time. In total, we have 1,751 tuples of
duplicate pull requests. Table 1 presents the quantitative
overview of the dataset. It lists the main metrics including
the number of pull requests, the number of pull request
contributors, the number of pull request reviewers and their
review comments, and the number of pull request checks
(introduced in Section 3.2.2).

TABLE 1: The quantitative overview of the dataset

Metrics Overall pull requests DupPR

#Pull reqeusts 333,200 3,619
#Contributors 39,776 2,589
#Reviewers 24,071 2,830
#Comments 2,191,836 39,945
#Checks 364,646 4,413

3.2 Collecting complementary data
3.2.1 Patch detail
GitHub API (/repos/:owner/:repo/pulls/:pull_nu-
mber/commits) allows us to retrieve the commits
on each pull request. From the returned results, we
parse the sha of each commit and request the API
(/repos/:owner/:repo/commits/:commit_sha) to
return detailed information about a commit, including
author and author_date. Moreover, the API (/repos/-
:owner/:repo/pulls/:pull_number/files) returns
the files changed by a pull request, from which we can
pare the filename and changes (lines of code added and
deleted) of each changed file.

3.2.2 Check statuses
Various DevOps tools are seamlessly integrated and widely
used in GitHub; examples are Travis-CI [14] for continuous
integration and Code-Climate [4] for static analysis. When a
pull request has been submitted or updated, a set of DevOps
tools are automatically launched to check whether the pull
request can be safely merged back to the codebase. GitHub
API (/repos/:owner/:repo/commits/:ref/status)
returns the check statuses for a specific commit. There
are two different levels of statuses in the returned results.
Because multiple DevOps tools can be used to check a
commit, each tool is associated with a check status, which
we call the context-level check status. For each context-level
check status, we can parse the state and context fields.
The state of a check can be designated success, failure,
pending, or error. State success means a check has successfully
passed, while failure indicates that the check has failed. If the
check is still running and no result is returned, its state is
pending. State error indicates a check did not successfully
run and produced an error. Following the guidelines of
prior work [22], [81], we treat the state error as the same
as failure, which are both opposed to success. The context

indicates which tool is used in a specific check. According to
the bot classification defined in prior study [102], the check-
ing tools can be classified into three categories: CI (report
continuous integration test results, e.g., Travis-ci), CLA
(ensure license agreement signing e.g., cla/google), and
CR (review source code e.g., coverage/coveralls and
codeclimate). Based on all context-level check statuses of
a commit, the API also returns a overall check status of that
commit [8], which we call the commit-level check status. The
state of a commit-level check can be one of success, failure
and pending.

3.2.3 Timeline events
GitHub API (/repos/:owner/:repo/issues/:issue_
number/events) returns the events triggered by activities
(e.g., assigning a label and posting a comment) in issues and
pull requests. We request this API for eah pull request. From
the returned result, we can parse who (actor) triggered
which event (event) at what time (created_at). For close
events, we can parse which commit (commit_id, aka SHA)
closed the pull request. Events data are mainly used for
rechecking dataset and determining pull request acceptance.

3.2.4 Contribution histories
Rather than requesting the GitHub API, we use the
GHTorrent dataset [40], which makes it easier and more
efficient to obtain the entire contribution history for a
specific developer in GitHub. GHTorrent stores its data
in several tables and we mainly use pull_requests
(PR), issues, pull_request_history (PRH),
pull_request_comments (PRC), and issue_comments
(ISC). From table PR, table PRH, and table PRC, we can
parse who (PRH.actor_id) submitted which pull request
(PR.pullreq_id) to which project (PR.base_repo_id)
at what time (PRH.created_at) and who (PRC.user_id)
have commented on that pull request at what time
(PRC.created_at). Similarly, from table issues and
table ISC, we can parse who (issues.reporter_id)
reported which issue (issues.issue_id) to which project
(issues.repo_id) at what time (issues.created_at)
and who (ISC.user_id) commented on that issue at what
time (ISC.created_at). Based on this information we
can acquire the whole contribution history for a specific
developer.

3.2.5 Poularity and reputation
GHTorrent also provides tables relating to project pop-
ularity and developer reputation. From table watchers,
we can parse who (user_id) started to star which
project (repo_id) at what time (created_at). From ta-
ble projects, we can parse which project (id) was
forked from which project (forked_from) at what time
(created_at). From table followers, we can parse who
(followers) started to follow whom (user_id) at what
time (created_at).

4 THE IMPACT OF DUPLICATE PULL REQUESTS

Although duplicate pull requests can bring certain benefits
(e.g., they could complement each other and be combined
to achieve a better solution), most unintentional duplicate

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

pull requests are likely to waste resources during the asyn-
chronous development and review process. In this section,
we report a quantitative analysis that helps to better under-
stand the impact of duplicate pull requests on development
efforts and review processes.

4.1 Redundant effort
Duplicate pull requests are organized as tuple structure in
our dataset, i.e., < dup1, dup2, dup3, ..., dupn >. For each
tuple, we identify the first received pull request (i.e., dup1)
as the ‘master’, and the following ones (i.e., dupi, i>1) as
its ‘duplicates’. Since we want to quantify how much extra
effort would be costed if the first contribution has been qual-
ified, we accumulate the effort spent on all duplicates (i.e.,
Σn

i=2dupi) as the redundancy. In this section, we analyze
the redundant effort caused by duplicate pull requests from
three perspectives, i.e., code patch, code review, and DevOps
checking.

Code patch redundancy: A group of pull requests being
duplicate means that multiple contributors have spent un-
necessary redundant effort on implementing similar func-
tionalities. We measure contribution effort for the code patch
of a pull request with the number of changed files and LOCs
(i.e., lines of code). The statistics is summarized in Table 2.
We can see that each group of duplicates, on average, result
in redundant contribution effort of changing more than 13
files (median of 2) and 502 LOCs (median of 16).

TABLE 2: The statistics of code patch redundancy

Min 25% Median 75% Max Mean

#Files 0 1 2 3 3824 13.79
LOCs 0 4 16 70 82973 502.68

Code-review redundancy: For a group of duplicate pull
requests, each one is reviewed separately until the reviewers
detect the duplicate relation among them. That is, there is a
detection latency of duplicate pull requests, and the review
activities of the duplicates during that latency period are
redundant. We define detection latency as the time period
from the submission time of a pull request to the creation
time of the first comment revealing the duplicate relation
between it and other pull requests. Figure 3 shows the
distribution of detection latency. We find that almost half
of the duplicates are detected after one day, and nearly 20%
of them are detected after more than one week. The later the
duplicate relation is detected, the more redundant review
effort would be wasted.

Next, we compute the redundant review effort wasted
during the detection latency, which is measured with the
number of involved reviewers and the number of comments
they have made. As shown in Table 3, there are, on aver-
age, more than 2 reviewers (median of 2) participating in
the redundant review discussions and making more than
5 review comments (median of 3) before the duplicate
relation is identified. This considerable redundancy cost
reaches the standard number of contemporary peer review
practices [74], [75] (i.e., median of 2 reviewers and 2-5
comments). Considering that the availability of reviewers

Fig. 3: Detection latency of duplicate pull requests.

has been discussed as one of the bottlenecks in large OSS
projects’ review process [107], code review redundancy can
be avoided through automatic detection tools [57], [73] at
submission time.

TABLE 3: The statistics of code-review redundancy

Min 25% Median 75% Max Mean

#Reviewers 1 1 2 3 35 2.30
#Comments 1 2 3 6 148 5.68

DevOps redundancy: DevOps techniques, e.g., continuous
integration, are widely used to improve code quality in
GitHub. However, running DevOps services to check pull
requests consumes a certain amount of resources and time.
Moreover, both newly submitted pull requests and updates
on existing pull requests trigger the launch of DevOps ser-
vices. Therefore, duplicate pull requests waste valuable De-
vOps resources on redundant checking effort. In this paper,
we measure the DevOps effort on a pull request by counting
the total number of commit-level checks and context-level
checks on this pull request. Table 4 lists the statistics for
DevOps redundancy related to duplicates. We find that
each group of duplicate pull requests, on average, cause
1.34 redundant commit-level checks and 2.87 redundant
context-level checks. Thus, it is possible to improve DevOps
efficiency by stopping or postponing the unnecessary checks
of duplicates from the scheduling queue.

TABLE 4: The statistics of DevOps redundancy

Min 25% Median 75% Max Mean

#CMT-Check 0 1 1 1 30 1.34
#CTT-Check 0 1 1 3 66 2.87

CMT-Check: commit-level checks; CTT-Check: context-level checks

4.2 Delayed review process
The review duration, the number of reviewers and the
number of comments made by these reviewers are impor-
tant metrics for the efficiency of the pull request review
process. Based on these metrics, we study whether the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

review process of duplicate pull requests differs from that of
non-duplicate pull requests. We classify the duplicate pull
requests into two groups: MST including the ‘master’ in
each tuple, DUP including the ‘duplicates’ in each tuple.
For comparison, we also create the NON group, which in-
cludes all non-duplicate pull requests from the correspond-
ing projects. Figures 4, 5, and 6 plot the statistics of the re-
view duration, the number of reviewers and the number of
review comments of pull request in each group, respectively.
We observe that MST has notably longer review duration
(median: 291.07 hours), compared with NON (median: 22.83
hours) and DUP (median: 21.75 hours). Moreover, compared
with NON, both MST and DUP have more reviewers
(medians: 3 vs. 2, 3 vs. 2) and more review comments
(medians: 6 vs. 3, 4 vs. 3). Furthermore, we use the T̃-
procedure [50] to compare their distributions pairwise. We
opt for T̃ because it is robust against unequal population
variances and does not have the drawbacks of two-steps
methods [95]. As shown in Table 5, all distributions are
statistically different (p-value< 0.05), except for NON-DUP
of review duration. And the signs of estimators also coincide
with the observations from the figures, e.g., the estimator of
NON-MST in terms of review duration comparison is less
than 0 (-0.232) which indicates that MST has longer review
time than NON. This suggests that the review process of
duplicate pull requests is significantly delayed and involves
more reviewers for extended discussions.

Fig. 4: The review duration of pull requests.

Fig. 5: The number of pull request reviewers.

Fig. 6: The number of review comments on pull requests.

TABLE 5: Results of multiple contrast test procedure for
review process measures

Pair Estimator Lower Upper Statistic p-value

Review duration
NON - MST -0.232 -0.246 -0.218 -38.822 0.000 ***
NON - DUP -0.012 -0.028 0.004 -1.771 0.172
MST - DUP 0.220 0.200 0.240 25.400 0.000 ***

Number of reviewers
NON - MST -0.191 -0.206 -0.176 -30.065 0.000 ***
NON - DUP -0.114 -0.127 -0.100 -19.549 0.000 ***
MST - DUP 0.077 0.056 0.098 8.606 0.000 ***

Number of review comments
NON - MST -0.168 -0.182 -0.154 -27.077 0.000 ***
NON - DUP -0.085 -0.098 -0.071 -14.338 0.000 ***
MST - DUP 0.083 0.063 0.104 9.305 0.000 ***

*** p <0.001, ** p <0.01, * p <0.05

RQ1: Duplicate pull requests result in considerable redun-
dancy in writing code and evaluation. On average, each
group of duplicate pull requests would result in code patch
redundancy of more than 13 files and 500 lines of code, code-
review redundancy of more than 5 review comments created
by more than 2 reviewers, and DevOps redundancy of more
than 1 commit-level check and more than 2 context-level
checks. Moreover, duplicate pull requests significantly slow
down the review process, requiring more reviewers for extended
discussions.

5 CONTEXT WHERE DUPLICATE PULL REQUESTS
ARE PRODUCED

Despite of the increased activity transparency and informa-
tion centralization in the pull-based development, develop-
ers still submitted duplicates. Thus, we further investigate
the context in which duplicates occur and the factors leading
pull requests to be duplicates.

First, we investigate the context of pull requests when
duplicate occurs, as described in Section 5.1. In particular,
we examine the lifecycle of pull requests and discover
three types of sequential relationship between two duplicate
pull requests. For each relationship, we investigate whether

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

contributors’ work patterns and their collaborating envi-
ronment have any flaw that may produce duplicate pull
requests.

Second, we investigate the differences between duplicate
and non-duplicate pull requests, as described in Section 5.2.
We identify a set of metrics from prior studies to character-
ize pull requests. We then conduct comparative exploration
and regression analysis to examine the characteristics that
can distinguish duplicate from non-duplicate pull requests.

5.1 The context of duplicate pull requests
The entire lifecycle of a pull request consists of two stages:
local creation and online evaluation. In the local creation stage,
contributors edit the files and commit changes to their local
repositories. In the online evaluation stage, contributors
submit a pull request to notify the integrators of the original
repository to review the committed changes online. These
two stages are separated by the submission time of a pull
request. For each pair of pull requests, there are only three
types of sequential relationships in logic when comparing
the order in which they enter each stage. We manually
analyze contributors’ work patterns, discussion and the
collaborating environment to explore the possible context
of duplicates in different relationships. In the following
sections, we first elaborate on the three types of sequen-
tial relationships and then present the identified context
of duplicate pull requests demonstrated by statistics and
representative cases.

5.1.1 Types of sequential relationship
We first introduce two critical time points, T -Creation and
T -Evaluation, in the lifecycle of pull requests; these time
points are defined as follows.

• T -Creation indicates the start of pull request local
creation. It is impossible to know the exact time at
which a developer begins to work since developers only
git commit when their work is finished rather than
when the work is launched. However, we can still get
an approximate start time. We set T -Creation as the
author_date of the first commit packaged in a pull
request, which is the earliest timestamp contained in
the commit history of a pull request.

• T -Evaluation indicates the start of pull request online
evaluation, i.e., the submission time of a pull request.
This value is the created_at value of a pull request.

For a pair of duplicate pull requests <mst pr, dup pr>
(mst pr is submitted earlier than dup pr), we suppose that
the contributor of mst pr begins to work at T -Creationmst

and submits mst pr at T -Evaluationmst, and the contribu-
tor of dup pr starts to work at T -Creationdup and submits
dup pr at T -Evaluationdup. We discover three possible
sequential relationships between mst pr and dup pr, as
shown in Figure 7.

• Exclusive. T -Creationmst < T -Evaluationmst <
T -Creationdup < T -Evaluationdup, i.e., the author of
dup pr begins to work after the author of mst pr has
already finished the local work and submitted the pull
request.

• Overlapping. T -Creationmst < T -Creationdup ≤
T -Evaluationmst < T -Evaluationdup, i.e., the author

Timeline

T-EvaluationmstT-Creationmst
Exclusive

mst_pr dup_pr

Overlapping
mst_pr

dup_pr

Inclusive
dup_pr

mst_pr

T-EvaluationdupT-Creationdup

T-EvaluationmstT-Creationmst

T-EvaluationdupT-Creationdup

T-EvaluationmstT-Creationmst

T-EvaluationdupT-Creationdup

Fig. 7: The sequential relationship between two pull requests
mst pr and dup pr.

of dup pr starts working after the author of mst pr
starts working and before the author of mst pr finishes
working.

• Inclusive. T -Creationdup ≤ T -Creationmst <
T -Evaluationmst < T -Evaluationdup, i.e., although
the author of dup pr starts to work earlier than the
author of mst pr does, s/he submits the pull request
later.

In the above, we discuss the common cases where de-
velopers first commit changed code and then submit a
pull request. However, we also find rare cases where the
pull request submission time is earlier than the first code-
committing time. This might be due to the permission to
submit ‘empty’ pull requests in the early stage of GitHub
as indicated in its official document [15], or the incomplete
record of developers’ updates to the pull request, e.g., force-
push actions. The aforementioned definition of sequential
relationship between CTS (commit-then-submit) pull re-
quests does not apply to these STC (submit-then-commit)
pull requests. To demonstrate this kind of situation, we
define T -Exposure to indicate the exposure time of devel-
oper’s ideas for STC pull requests. T -Exposure is also set to
be the created_at of pull requests. Next, we discuss the
sequential relationship between two pull requests, of which
at least one is a STC pull request.

TABLE 6: Three cases involving the STC pull requests

Case mst pr dup pr

1 CTS STC
2 STC STC
3 STC CTS

As shown in Table 6, there are three specific
cases involving STC pull requests. In case 1
(T -Creationmst < T -Evaluationmst < T -Exposuredup)
and case 2 (T -Exposuremst < T -Exposuredup), the
local work or the idea of mst pr has been exposed to
the community before dup pr is submitted. Therefore,
we treat the sequential relationship between a pair
of pull requests in these two cases as exclusive.
In case 3, there are two possible situations: a)
T -Exposuremst < T -Creationdup < T -Evaluationdup

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

means that the idea of mst pr has been exposed
before the author of dup pr starts to work and their
sequential relationship can be seen as exclusive. b)
T -Creationdup < T -Exposuremst < T -Evaluationdup

means the author of dup pr starts to work before the
idea of mst pr is exposed and finishes the work after
that; therefore, their sequential relationship can be seen as
inclusive.

Finally, to explore the distribution of the three types
of relationships in our dataset, we convert each tuple of
duplicate pull requests (< dup1, dup2, dup3, ..., dupn >)
to pairs: (dupi, dupj), where 1 ≤ i, j ≤ n and i < j. Table 7
shows the distribution, and we can see that the majority
of duplicate pull request pairs have an exclusive sequential
relationship (i.e., the duplicate contribution begins to work
after the original pull request has been visible), which
suggests that it is still a great challenge of awareness and
transparency [37] during collaboration process.

TABLE 7: The distribution of different sequential relation-
ships in the dataset

Exclusive Overlapping Inclusive

Count 1,924 17 81

5.1.2 Context of exclusive duplicate pull requests

Not searching for existing work. For a pair of exclusive
duplicate pull requests, there is a time window during
which the author of dup pr had a chance to figure out the
existence of mst pr. However, the author failed to do so
and finally submitted a duplicate pull request. For example,
contributors did not search the existing pull requests for
similar work (e.g., the typical responses in duplicates: “Oh,
Sorry I did not search for a previous PR before submitting a PR”
and “Ah should have searched first, thanks”). In some cases,
developers’ search was not complete because they only
searched the open pull requests and missed the closed ones
(e.g., “Ah, my bad. I thought I searched, but I must have only been
looking at open”). The survey conducted by Gousios [41] also
showed that 45% contributors occasionally or never check
whether similar pull requests already exist before coding.

Diversity of natural language usages. Some developers
tried to search for existing duplicates, but they ultimately
found nothing (e.g., “Sorry, I searched before pushing but did
not find your PR...”). One challenge is the diversity of natural
language usages. For a pair of duplicate pull requests, we
compute the common words ratio based on their titles,
which is calculated by the following formula.

CWR(mst pr, dup pr) =
|WSmst pr ∩WSdup pr|

|WSmst pr|
(1)

WSmst pr and WSdup pr represent the set of words
extracted from the titles of mst pr and dup pr, respec-
tively, after necessary preprocessing like tokenizing, stem-
ming [61], and removing common stop words. Figure 8
shows the statistics of common words ratio. Approximately
half of them have a value less than 0.25, which means a pair
of duplicates tend to share a small proportion of common

words. That is to say, a keyword-based query cannot always
successfully detect existing duplicate pull requests due to
the difference in wording for the same concept. For example,
the title of angular/angular.js/#4916 is “Fixed step12 correct file
reference” and the title of angular/angular.js/#4860 is “Changed
from phone-list.html to index.html”. We can see that the two
titles share no common word although the two pull requests
have edited the same file and changed the code in the same
line.

Fig. 8: The statistics of common words ratio between dupli-
cates.

Disappointing search functionality in GitHub. Another
challenge that can cause ineffective searching for du-
plicates is that GitHub’s search functionality might be
disappointing in retrieving similar pull requests even
though they share common words. For example, the ti-
tles of angular/angular.js/#5063 and angular/angular.js/#7846
are “fix(copy): preserve prototype chain when copying object”
and “Use source object prototype in object copy”, respectively,
which share three common critical words, i.e., prototype,
copy, and object. For testing purpose, we launch a query
in GitHub using the keywords prototype copy object. We
retrieve 9 pages (each page containing 10 items) of issues
and pull requests in the search results and we finally
find angular/angular.js/#5063 in the 7th page. It is unlikely
that developers have the willingness and patience to look
through 7 pages of search results to figure out the existence
of duplicates, since people tend to focus on the first few
pages [49]. Perhaps that is exactly what leads the author of
angular/angular.js/#7846 to submit a duplicate, although he
blamed the failed retrieval on himself (“apologies, I did search
before posting (forget the search term I used) but clearly my search
was bad... Thanks for finding the dup”).

Large searching space. Developers might manually look
through the issue tracker to search for duplicates rather
than retrieving through a query interface. Sometimes it
is hard to find out the existing duplicates due to large
searching space. The statistics of exclusive intervals be-
tween duplicates is listed in Table 8. On average, the local
work of dup pr is started approximately 1,400 hours (i.e.,
more than 58 days) after mst pr has been submitted. Dur-
ing that long period, many new pull requests have been
submitted in popular projects. For example, 307 pull re-
quests were submitted between pandas-dev/pandas/#9350 and
pandas-dev/pandas/#10074. These pull requests can occupy
more than 10 pages in the issue tracker, which makes it
rather hard and ineffective to review historical pull requests
page by page, as a developer stated “...This is a dup of that
PR. I should have looked harder as I didn’t see that one when I
created this one...”.

Overlooking linked pull requests. When developers sub-
mit a pull request to solve an exiting GitHub issue, they
can build a link between the pull request and the issue by

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

TABLE 8: The statistics of exclusive intervals (in hour)

Min 25% Median 75% Maxs Mean

Interval 0.004 23.81 212.59 1276.82 29377.12 1397.59

referencing the issue in the pull request description. The
cross-reference is also displayed in the discussion timeline
of the issue. Links not only allow pull request reviewers
to find out the issue to be solved by a pull request but
also help developers who are concerned with an issue to
discover which pull requests have been submitted for that
issue. In some cases, contributors did not examine or did
not notice the linked pull requests to an issue (e.g., “Uhm
yeah, didn’t spot the reference in#21967” and “Argh, didn’t see
it in the original issue. Need more coffee I guess”) to make sure
that no work had already been submitted for that issue, and
consequently submitted a duplicate pull request.

Lack of links. If a developer does not link her/his pull
request to the associated issue, other developers might
asynchronously do the duplicate work to fix the same
one. For example, a developer Dev2 submitted a pull re-
quest facebook/react/#6135 trying to address the issue face-
book/react/#6114. However, Dev2 was told that a duplicate
pull request facebook/react/#6121 was already submitted by
Dev1 before him. The conversation between Dev1 and Dev2
(Dev2 said “I’m glad to hear that. But please link your future
PRs to the issues”, and Dev1 replied “Yeah I will, that’s on
me!”) revealed that the lack of the link accounted for the
duplication.

Missing notifications. If developers have watched [37], [80]
a project, they receive notifications about events that occur
in the project, e.g., new commits and pull requests. The no-
tifications are displayed in developers’ GitHub dashboard
and, if configured, sent to developers via email. However,
developers might miss the important notifications due to
information overload [36], and eventually submit a dupli-
cate. For example, kubernetes/kubernetes/#43902 was dupli-
cate of kubernetes/kubernetes/#43871 because the author of
kubernetes/kubernetes/#43902 missed the creation notification
of the early one (as the author said “missed the mail for the
PR it seems :-/”).

5.1.3 Context of overlapping and inclusive duplicates

Unawareness of parallel work. Developers who encounter
a problem might prefer to fix the problem by themselves
and submit a pull request, instead of reporting the problem
in the issue tracker and waiting for a fix. When a problem is
encountered by two developers at the same time, regardless
of which developer is the first to work on the problem, the
other developer might also start to work on the problem
before the first developer submits a pull request. In such
cases, both developers are unaware of concurrent activities
of each other, because their local work is conducted offline
and is not publicly visible. For example, the authors of em-
berjs/ember.js/#4214 and emberjs/ember.js/#4223 individually
fixed the same typos in parallel without being aware of each
other, and finally submitted two duplicate pull requests.

Implementing without claiming first. Sometimes, devel-
opers directly start to implement a patch for a GitHub
issue without claiming (e.g., leaving a comment on the
corresponding issue like “I’m on it”). This can introduce
a risk that other interested developers might also start to
work on the same issue without awareness of that there is
already a developer working on that issue. For example,
although two developers were both trying to solve the issue
facebook/react/#3948, neither of them claimed the issue before
coding their patch. Finally, they submitted two duplicate
pull requests facebook/react/#3949 and facebook/react/#3950.
The phenomenon that developers are not used to claim
issues was also reported in previous research [114].

Missing existing claims. Although a public issue has been
claimed by a developer, other OSS contributors still have a
chance of missing the claim comments among issue discus-
sions. For example, a developer Dev1 first claimed the isssue
scikit-learn/scikit-learn/#8503 by leaving a comment “We are
working on this”. However, another developer Dev2 did not
notice this claim as explained by herself: “Ah , nope. I just
realized someone was also working on it after I committed”. Con-
sequently, Dev2 and Dev1 conducted duplicate development
in parallel and submitted two duplicate pull requests scikit-
learn/scikit-learn/#8517 and scikit-learn/scikit-learn/#8518, re-
spectively.

Overlong local work. For overlapping and inclusive dupli-
cate pull request pairs, we calculate the local duration of
the work started earlier. Specifically, we collect two groups
of pull requests: (a) OV L, which includes mst pr of each
pair of overlapping duplicates, and (b) INC , which includes
dup pr of each pair of inclusive duplicates. Figure 9 plots
the duration statistics of each group together along the
group NON, which includes all non-duplicate pull requests.
We observe that compared with the pull requests in NON,
the pull requests in OV L and INC have longer local
durations regarding median measures. We also test the
difference using the T̃-procedure test. As shown in Table 9,
the difference is significant (p-value<0.05), and the signs
of estimators present consistent difference directions. This
reveals that overlong local work delays the exposure time of
work and thereby hinders late contributors from realizing
in a timely fashion that someone has already done the same
work. As discussed in [41], developers rarely recheck the
existence of similar pull request after they have finished the
local work.

Fig. 9: Duration of local work in each group.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

TABLE 9: Results of multiple contrast test procedure for
local work durations

Pair Estimator Lower Upper Statistic p-value

OVL - NON 0.256 0.109 0.402 4.188 0.001 ***
NON - INC -0.385 -0.427 -0.344 -22.251 0.000 ***
OVL - INC -0.130 -0.294 0.035 -1.891 0.138

*** p <0.001, ** p <0.01, * p <0.05

RQ2-1: We identified 11 contexts where duplicate pull re-
quests occur, which are mainly relating to developers’ behav-
iors, e.g., not checking for existing work, not claiming before
coding, not providing links, and overlong local work, and their
collaborating environment, e.g., unawareness of parallel work,
missing notifications, lack of effective tools for checking for
duplicates.

5.2 The difference between duplicate and non-
duplicate pull requests
Although some specific cases could be effectively avoided
if developers pay attention to their work patterns, du-
plicates are difficult to eradicate completely considering
the distributed and spontaneous nature of OSS develop-
ment. Therefore, automatic detection of duplicates is still
needed to help reviewers dispose of duplicates faster and
in a timely fashion. Given that prior studies have mainly
used a similarity-based method to detect duplicate pull re-
quests [57], [73], we are interested in exploring the difference
between duplicate and non-duplicate pull requests from a
comparative perspective, which could offer useful guidance
to optimize detection performance. In particular, we want
to observe what distinguishing characteristics of duplicate
pull requests are leading them to be duplicates. First, we
identify metrics that are used in prior research, as shown
in Section 5.2.1. Then, we compare duplicate and non-
duplicate pull requests in terms of each metric, and check
whether significant difference could be observed between
them through statistical test, as described in Section 5.2.2.
Furthermore, in Section 5.2.3, we apply a regression analysis
to model the correlations between the collected metrics and
pull requests’ likelihood of being duplicates.

5.2.1 Metrics
As the difference between duplicates and non-duplicates
has not been studied in past studies, our study is an ex-
ploratory analysis. Therefore, we identified highly related
metrics which have been studied in the previous research
in the area of OSS contribution including traditional patch-
based development [20], [44], [47], [68], [101] and modern
pull request development [27], [40], [52], [71], [93], [95],
[96], [108], [114]. The selected metrics are classified into the
following three categories.

Project-level characteristics.
Maturity. Previous studies [71], [93], [108] used the met-

ric proj_age, i.e., the period of time from the time the
project was hosted on GitHub to the pull request submission
time, as an indicator of the project maturity.

Workload. Prior studies have characterized project
workload using two metrics: open_tasks [108] and
team_size [40], [93], [108], which are the number of open
issues and open pull requests at the pull request submission
time and the number of active core team members during
the last three months, respectively.

Popularity. In measuring project popularity, the metrics
stars and forks, i.e., the total number of stars and the
total number of forks the project has got prior to the pull
request submission, were commonly used in previous stud-
ies [27], [93].

Hotness. This metric is the number of total changes on
files touched by the pull request three months before the
pull request creation time [40], [108].

Submitter-level characteristics.
Experience. Developers’ experience before they submit

the pull request has been analyzed in prior studies [40],
[47]. This measure can be computed from two perspec-
tives: project-level experience and community-level expe-
rience. The former measures the number of previous pull
requests that the developer have submitted to a specific
project (prev_pullreqs_proj) and their acceptance rate
(prev_prs_acc_proj). The latter measures the number of
previous pull requests that the developer have submitted
to GitHub (prev_pullreqs) and their acceptance rate
(prev_prs_acc). When calculating acceptance rate, the
determination of whether the pull request was integrated
through other mechanisms than GitHub’s merge button
follows the heuristics defined in previous studies [40], [114].
We also use two metrics first_pr_proj and first_pr
to represent whether the pull request is the first one sub-
mitted by the developer to a specific project and GitHub,
respectively.

Standing. A dichotomous metric core_team, which in-
dicates whether the pull request submitter is the core team
member of the project, was commonly used as a signal
of the developer’s standing within the project [93], [108].
Furthermore, a continuous metric followers, i.e., the num-
ber of GitHub users that are following the pull request
submitter, was used to represent the developers’ standing
in the community [40], [93], [108].

Social connection. The metric prior_interaction,
which is the total number of events (e.g., such as comment-
ing on issues and pull requests) prior to the pull request
submission that the developer has participated in within the
project, was usually used to measure the social connection
between the developer and the project [93], [108].

Patch-level characteristics.
Patch size. Prior studies [40], [93], [95] quantified the size

of a patch, i.e., the changes contained in the pull request,
in different granularity. The commonly used metrics are the
number of changed files (files_changed) and the number
of changed lines of code added and deleted (loc).

Textual length. This metric is computed by counting the
number of characters in the pull request title and descrip-
tion [108].

Issue tag. This metric indicates whether the pull request
description contains links to other GitHub issues or pull
requests [40], [108], such as “fix issue #1011”. We determine

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

this metric by automatically checking the presence of cross-
references in the pull request description based on regular
expression technique.

Type. Prior studies [44], [63] summarized that developers
can make three primary types of changes: fault repairing
(FR), feature introduction (FI), and general maintenance
(GM). The change type (change_type) of the pull request
is identified by analyzing its title and commit messages
based on a set of manually verified keywords [63]. Prior
studies [45], [97] also identified the types of developer activ-
ities on the basis of the types of changed files. We follow the
classification by Hindle et al. [45], which includes four types:
changing source code files (Code), changing test files (Test),
changing build files (Build), and changing documentation
files (Doc). This metric (activity_type) is determined by
checking the names and extensions of the files changed by
the pull request.

5.2.2 Comparative exploration
In order to explore the difference between duplicate and
non-duplicate pull requests, we compare them in terms
of each of the collected metrics and study to what extent
a metric varies across duplicate and non-duplicate pull
requests. Specifically, we formulate a non-directional hy-
pothesis which can be used when there is insufficient theory
basis for the exact prediction (i.e., we do not predict the
exact direction of the difference). The null hypothesis and
the alternative hypothesis are defined as follows:

H0: duplicate and non-duplicate pull requests exhibit the
same value of metric m.

H1: duplicate and non-duplicate pull requests exhibit
different values of metric m.
∀m ∈ {proj_age, open_tasks, team_size, forks,

stars, hotness, prev_pullreqs, prev_prs_acc,
first_pr, first_pr_proj, prev_pullreqs_porj,
prev_prs_acc_proj, core_team, followers,
prior_interaction, loc, files_changed, text_len,
issue_tag, change_type, activity_type}

H0 is tested with Mann-Whitney-Wilcoxon test [105] on
continuous metrics and Chi-square test [72] on categorical
metrics. The test results are listed in Table 10 which reports
the p-value and effect size of each test. The p-values are
adjusted using the Benjamini-Hochberg (BH) method [23]
to control the false discovery rate. To measure the effect
size, we use Cliff’s delta (d) [59] as it is a non-parametric
approach which does not require the normality assumption
of a distribution.

We reject H0 and accept H1 when p-value is less than
0.05. We can see that the null hypothesis is rejected on all
metrics except for open_tasks. This means that duplicate
and non-duplicate pull requests are significantly different in
terms of all metrics except for open_tasks. Following the
previous guidelines [70], [90] on interpreting the effect size
(trivial: |d| ≤ 0.147; small: 0.147 < |d| < 0.33; medium:
0.33 ≤ |d| < 0.474; large: |d| ≥ 0.474), we find that the
effect size of difference is generally small with a maximum
of 0.285.

5.2.3 Regression analysis
The comparative exploration does not consider the cor-
relations between metrics. As a refinement, we apply a

TABLE 10: Results of hypothesis test

Metric
Adjusted
p-value Effect size

Project-level characteristics
proj_age 4.1e-21 *** 0.091

open_tasks 0.791 0.003
team_size 3.8e-41 *** 0.131

stars 2.1e-46 *** 0.139
forks 8e-61 *** 0.159

hotness 4.5e-36 *** 0.122

Submitter-level characteristics
first_pr 9.9e-33 *** 0.045

prev_pullreqs 7.7e-94 *** 0.199
prev_prs_acc 8.5e-90 *** 0.205
first_pr_proj 6.4e-148 *** 0.148

prev_pullreqs_proj 1.1e-190 *** 0.285
prev_prs_acc_proj 8.5e-52 *** 0.173

core_team 2.5e-116 *** 0.192
followers 1.2e-20 *** 0.090

prior_interaction 5.1e-107 *** 0.212

Patch-level characteristics
files_changed 4.6e-08 *** 0.050

loc 3e-16 *** 0.079
text_len 9.1e-66 *** 0.166

issue_tag 0.001 ** 0.027
change_type 8.5e-26 *** 0.095

activity_type 3.4e-07 *** 0.003
*** p <0.001, ** p <0.01, * p <0.05

regression analysis to model the effect of the selected metrics
on pull requests’ likelihood of being duplicates.

Regression modeling. We build a mixed effect logistic
regression model which is fit to capture the relationship
between the explanatory variables, i.e., the metrics discussed
in Section 5.2.1, and a response variable, i.e., is dup, which
indicates whether a pull request is a duplicate. Since our
dataset is nested in the aspect of project (i.e., the pull
requests collected from 26 different projects), the selected
metrics are modeled as fixed effects, and a new vari-
able proj_id is modeled as a random effect, to mitigate
the over-represented phenomena present in some of the
projects. Instead of building one model with all metrics
at once, we add one level metrics at a time and build a
model, which can check whether the addition of the new
metrics can significantly improve the model. As a result,
we compare the fit of three models: a) Model 1, which
includes only project-level variables, b) Model 2, which adds
the submitter-level variables, and c) Model 3, which adds
patch-level variables. In the models, all numeric factors are
log transformed (plus 0.5 if necessary) to stabilize variance
and reduce heteroscedasticity [60]. We manually check the
distributions of all variables, and conservatively remove not
more than 3% of values as outliers with exponential distri-
butions. This reduces slightly the size of our dataset onto
which we build the regression models, but ensures that our
models are robust against outliers [67]. In addition, we check
for the correlation of coefficients and the Variance Inflation

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14

Factors (VIF below 5 as recommended [32]) among vari-
ables to overcome the effect of multicollinearity. Specifically,
four metrics (forks, prev_prs_proj, prev_acc_proj,
and first_pr) are removed due to multicollinearity. This
process leaves us with 17 features, which can be seen in
Table 11.

Analysis results. The analysis results are shown in Table 11.
In addition to the coefficient, standard error, and signifi-
cance level for each variable, the table reports the area under
the ROC curve (AUC), the marginal R-squared (R2

m) and
conditional R-squared (R2

c) to quantify the goodness-of-fit
of each model. We can see that the models can explain more
variability in the data when considering both the fixed and
random effects (R2

c > R2
m). Overall, Model 3 performs better

than the other two Models (AUC: 0.729 vs 0.700/0.719) and
they have obtained consistent variable effects (i.e., there is no
significant effect flipping from positive to negative and vice
versa), therefore we discuss their effects based on Model 3.

With regard to project-level predictors, open_tasks
and team_size have significant, positive effects. This sug-
gests that the more open tasks (pull requests and issues) and
active core team members at the submission time of a new
coming pull request, the more likely the new pull request
is a duplicate. Especially, open_tasks does not show a
significant difference by making the comparison with a
single hypothesis testing, but exhibits a strong positive
effect when controlled for other confounds. The predictor
stars has a strong, negative effect, which means that
the more popular the project becomes the less likely the
submitted pull request is a duplicate. Our explanation is
that the popular projects have well-established codebase,
contribution guidelines and collaborating process. Hot files
tend to attract more contributions from the community,
but surprisingly, there is a negative effect of the hotness
metric. We assume that pull requests changing hots files
are more likely to be reviewed faster and get accepted in
a timely fashion. A quick review can allow the target issue
to be solved in short time, which prevents others from
encountering the same issue and submitting duplicate pull
requests. We leave a deep investigation in the future work.

As for submitter-level predictors, prev_prs_acc has a
negative effect and first_pr_proj has a positive effect
when its value is TRUE. This suggests that pull requests
submitted by inexperienced developers and newcomers are
more likely to be duplicates. On the contrary, the predic-
tors prior_interaction and core_team (TRUE) have
significant, negative effects, which indicates that pull re-
quests from core team members and developers who have a
stronger social connection to the project are less likely to be
duplicates. This highlights that developers equipped with
enough experience and those having a stronger relationship
with the project do better in avoiding duplicated work.

For patch-level predictors, two size related predictors
present opposite effects. The predictor loc has a negative
effect, which indicates that pull requests changing more
lines of codes have a less chance of being duplicates. While
the predictor files_changed has a positive effect, sug-
gesting that pull requests changing more files are more
likely to be duplicates. Generally speaking, the more lines
of code a patch have changed, the more complicated and

difficult a task it solves, which poses a barrier for potential
contributors (i.e., decreasing the likelihood of duplication).
While holding other variables constant, if a pull request
has touched more files, it increases the probability of the
patch being duplicate (or partial conflict) with others’ code
changes. We think this interesting result deserves a future
investigation. The predictor text_len has a positive effect,
indicating that pull requests with complex description are
more likely to be duplicates. Longer description may in-
dicate higher complexity and thus longer evaluation [108],
which increases the likelihood of the same issue being
encountered by more developers who might also submit a
patch for the issue. The predictor issue_tag has a positive
effect when its value is TRUE, suggesting that pull requests
solving already tracked issues have greater chances of being
duplicates. One possible reason is that tracked issues are
already publicly visible, and they are more likely to attract
more interested developers and result in conflicts. In terms
of change types (change_type), we can see that compared
with pull requests of the type FR, pull requests of the
type FI, GM and Other are less likely to be duplicates. We
speculate that fixing bugs are more likely to produce dupli-
cates because bugs tend to have general effect on a bigger
developer base compared to new feature or maintenance
requirements which might be specific to a certain group of
developers. For activity types (activity_type), we notice
that pull requests changing test files (activity Test) and
documentation files (activity Doc) have less chances of
being duplicates, compared with those changing source
code files. OSS projects usually encourage newcomers to try
their first contribution by writing documentation and test
cases [6], [11]. We conjecture that activities changing source
code files might require more effort and time to conduct the
local work, which are more risky and prone to duplication.

RQ2-2: Duplicate pull requests are significantly different
from non-duplicate pull requests in terms of project-level
characteristics (e.g., changing cold files and submitted when
the project has more active core team members), submitter-level
characteristics (e.g., submitted from newcomers and developers
who have weaker connection to the project), and patch-level
characteristics (e.g., solving already tracked issues rather than
non-tracked issues and fixing bugs rather than adding new
features or refactoring).

6 INTEGRATORS’ PREFERENCE BETWEEN DUPLI-
CATE PULL REQUESTS.

To investigate what kind of duplicate pull requests are
more likely to be accepted than their counterparts, we
first construct a dataset of the integrators’ choice between
duplicates, as described in Section 6.1. Then we perform
two investigations.

First, as described in Section 6.2, we identify metrics
from prior work in the area of patch evaluation and ac-
ceptance, and apply them in a regression model to analyze
their effects on the response variable accept, which indicates
whether a duplicate pull request has been accepted or
rejected.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

15

TABLE 11: Statistical models for the likelihood of duplicate pull requests

Model 1 Model 2 Model 3
response: is dup = 1 response: is dup = 1 response: is dup = 1

Coeffs. Errors Signif. Coeffs. Errors Signif. Coeffs. Errors Signif.

log(proj_age) 0.005 0.064 0.127 0.065 * 0.068 0.061
log(open_tasks + 0.5) 0.247 0.043 *** 0.199 0.042 *** 0.192 0.042 ***
log(team_size + 0.5) 0.152 0.080 . 0.209 0.079 ** 0.256 0.080 **

log(stars + 0.5) -0.046 0.013 *** -0.044 0.013 *** -0.049 0.013 ***
log(hotness + 0.5) -0.049 0.013 *** -0.010 0.013 -0.049 0.015 ***

log(prev_pullreqs + 0.5) - - - -0.034 0.014 * -0.020 0.014
log(prev_prs_acc + 0.5) - - - -0.207 0.064 ** -0.221 0.064 ***

first_pr_proj TRUE - - - 0.254 0.055 *** 0.231 0.055 ***
log(followers + 0.5) - - - 0.005 0.013 0.002 0.013

core_team TRUE - - - -0.222 0.056 *** -0.207 0.056 ***
log(prior_interaction + 0.5) - - - -0.035 0.011 ** -0.044 0.011 ***

log(files_changed + 0.5) - - - - - - 0.098 0.030 **
log(loc + 0.5) - - - - - - -0.049 0.015 ***

log(text_len + 0.5) - - - - - - 0.120 0.017 ***
issue_tag TRUE - - - - - - 0.102 0.038 **
change_type FI - - - - - - -0.308 0.043 ***
change_type GM - - - - - - -0.368 0.060 ***

change_type Other - - - - - - -0.291 0.048 ***
activity_type Test - - - - - - -0.285 0.072 ***
activity_type Build - - - - - - 0.020 0.084
activity_type Doc - - - - - - -0.317 0.059 ***

activity_type Other - - - - - - -0.006 0.060

Akaike’s Information Criterion (AIC): 37451.49 37059.59 36861.77
Bayesian’s Information Criteria (BIC): 37526.33 37198.58 37118.37

Area Under the ROC Curve (AUC): 0.700 0.719 0.729
Marginal R-squared (R2

m): 0.03 0.05 0.08
Conditional R-squared (R2

c): 0.18 0.20 0.25

*** p <0.001, ** p <0.01, * p <0.05

Second, we want to learn what exactly integrators exam-
ine when they accept a duplicate pull request rather than
its counterparts. We thus manually inspect 150 randomly
selected duplicate pairs and use the card sorting method [82]
to analyze the integrators’ explanations of their choice be-
tween duplicates, as described in Section 6.3.

6.1 The dataset of integrators’ choice between dupli-
cate pull requests
We convert each duplicate pull request tuple into pairs
(i.e., <mst pr, dup pr >, mst pr is submitted earlier than
dup pr), and collect integrators’ choice on each pair of du-
plicate pull requests. However, GitHub does not explicitly
label which duplicate has been accepted by the integrators.
Therefore, we decide to determine integrators’ choice based
on pull request status. A pull request in GitHub may occupy
a variety of status, i.e., open, merged, and closed. The status
open means a pull request is still under review and the
integrators have not made the final decision, while the

status closed means that the review of the pull request has
concluded and should no longer be discussed. If a pull
request is in the status merged , the pull request has been
accepted and the review is over.

The dataset construction consists of two steps: (a) filter-
ing out non-compared duplicate pairs, and (b) comparing
the statuses of duplicates, as elaborated in the following
sections.

6.1.1 Filtering out non-compared duplicate pairs
In the study, we focus on the duplicate pairs that integrators
compared after detecting their duplicate relation. First, we
exclude duplicate pairs in which both pull requests remain
open. Then, we exclude duplicate pairs which were closed
but not compared by integrators. Figure 10 shows the dif-
ferent cases where the relation identification and decision-
making between duplicates happened at different times.
In case A, mst pr was closed before dup pr was submit-
ted. In case B, although mst pr was closed after dup pr

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

16

was submitted, mst pr (or dup pr) was closed before the
duplicate relation between them was identified. In case
C, the relation identification and decision-making between
mst pr and dup pr happened after mst pr and dup pr
were submitted and before they were closed. Duplicate pairs
of cases A and B are excluded because integrators did not
make a comparison between them before making decisions.
Moreover, we also exclude from duplicate pairs of case C
those in which one pull request was closed by its submitter
before integrators left any comment. Finally, we exclude
875 non-compared duplicate pairs, and 1,147 duplicate pairs
remain.

mst_pr

Submission Close

mst_pr
dup_pr

dup_pr

Relation
identification

mst_pr

dup_pr

Relation identification Decision making

Submission Close

Submission Close

Submission Close

Submission

Submission

Timeline

A)

B)

C)

Fig. 10: Different cases where the relation identification and
decision-making between duplicates happen at different
times.

6.1.2 Comparing the statuses of duplicates
For a pair of duplicate pull requests, there are several
combination of their statuses (e.g., one is merged and the
other one is closed). In the following, we describe how to
determine integrators’ choice in different situations.

Only one is merged: If one of the duplicate pull requests is
merged and the other one is closed or open, the merged one
has clearly been accepted by integrators.

Both are merged: It is possible that both duplicates are ac-
cepted with some necessary coordination. For example, rust-
lang/rust/#20380 was first merged, and rust-lang/rust/#20437
was then rebased and merged afterwards to provide an
enhancement to the previous solution. In other cases, project
integrators might also merge two duplicate pull requests
to different branches; for example, rails/rails/#28068 and
rails/rails/#28399 were merged to branches master and
5-0-stable, respectively.

Both are not merged: It is somewhat complicated to deter-
mine which one has been accepted in a pair of duplicates in
which neither is merged (i.e., (closed, open) or (closed, closed)
or (open, closed)). Unlike the status merged, which always
means that a pull request has been accepted, the status
closed can indicate that a pull request is accepted or rejected,

which depends on the merge strategy of a specific project.
In GitHub, project integrators can click the merge button on
the web page to accept pull requests. However, integrators
can also merge pull requests outside GitHub via several
git commands. After that, integrators close the original
pull requests. This means that closed pull requests might
have been accepted. Prior research [40], [114] used a set of
heuristics to automatically determine whether a closed pull
request has been accepted. However, the heuristics are not
completely reliable as some accepted pull requests might be
mistakenly recognized as rejected, or vice versa. To avoid
this bias, we manually examine the entire review history
of a pair of duplicates to determine which one has been
accepted. Additionally, it is possible that both duplicates
in a pair are rejected. For example, rails/rails/#10737 and
rails/rails/#10738 were both rejected by integrators because
integrators think the change is not necessary.

Finally, as shown in Table 12, we collect a total of 1,082
duplicate pairs in which only one is accepted. Subsequently,
we conduct regression analysis and manual inspection
based on those 1,082 duplicate pairs.

TABLE 12: The statistics of integrators’ choice between
duplicates

Accept One Accept Both Reject Both

Count 1,082 36 29

6.2 Regression analysis

We conduct a regression analysis to investigate what fac-
tors would affect the chance that duplicate pull requests
would be accepted by integrators. In the following sections,
we present the selected predictors, regression models and
analysis results.

6.2.1 Predictors
The predictor selection is based on prior work in the
area of patch acceptance analysis. The selected predictors
are split into three categories: submitter-level, patch-level,
and review-level metrics. Compared with the study in
Section 5.2, this study additionally includes review-level
metrics because many signals in the code review process,
e.g., review discussion length, are available after pull re-
quest submission, and past studies have found that review-
level metrics have significant effects on pull request ac-
ceptance [40], [47], [52], [108]. However, this section does
not include project-level metrics because two duplicate pull
requests have the same project environment at the decision-
making time. To start with, we discuss our metrics as
follows.

Submitter-level metrics.
Developer experience is an important factor affecting

patch acceptance. Prior studies [20], [40], [52] have shown
that more experienced developers are more likely to get
their patches accepted. To understand whether developer
experience affects integrators’ choice between duplicates,
we still use six metrics to operationalize developer experi-
ence, i.e., prev_pullreqs_porj, prev_prs_acc_proj,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

17

prev_pullreqs, prev_prs_acc, first_pr_proj and
first_pr, as discussed in Section 5.2. The previous studies
showed that pull requests submitted by developers with
higher standing are more likely to be accepted [93], [108].
To investigate the influence of developers’ standing on
integrators’ choice, we include two metrics core_team and
followers defined in Section 5.2. A developer’s social
relationship and interaction history with others can affect
others’ judgement for the developer’s work [28], [42], [68].
Prior studies have found that pull requests from developers
with a stronger social connection to the project have a higher
chance to be accepted [93], [108]. In addition to the metric
prev_interaction as defined earlier, we include the met-
ric social_strength, which represents the proportion
of decision-making group members that have co-occurred
with the submitter in at least one discussion during the last
three months, to examine the effects of social metrics on
integrators’ choice.

Patch-level metrics.
Prior studies [40], [93], [108] have found that large

pull requests are less likely to be accepted. Integrators
value small pull requests as they are easy to assess and
integrate [42]. To investigate the effect of patch size on
integrators’ choice between duplicates, we include the
two size-related metrics presented in Section 5.2, i.e.,
files_changed and loc. The study conducted by Yu et
al. [108] showed that pull requests with longer description
have higher chances to be rejected. It also revealed that
pull requests containing links to issues have higher accep-
tance rates. For this, we include the metrics text_len and
issue_tag, which are already defined in Section 5.2. From
the prior work [37], [42], we learn that the existence of
testing code is treated as a positive signal when integrators
evaluate pull requests. Pull requests with test cases are
more likely to be accepted [40], [93], [108]. To investigate
this, we include a dichotomous metric test_inclusion
to indicate whether the pull request has changed test files.
Finally, in the context of selection between duplicate pull
requests, we conjecture that the order that pull requests
arrive might affect integrators’ choice. The duplicate pull
request submitted early might be more likely to be accepted
than the late one, because people usually consider the recent
one is redundant and should be closed in favor of the old
one [12], [87], [88]. To verify our conjecture, we include a
dichotomous metric early_arrival to indicate whether
the pull request is submitted earlier than its counterpart.

Review-level metrics.
The participation metrics relating to human review-

ers have been shown to affect the latency and outcome
of pull request review [52], [93], [108]. For example, the
study by Tsay et al. [93] showed that pull requests with a
higher amount of comments are less likely to be accepted.
To investigate the effects of human participation metrics
on integrators’ choice, we include two discussion-related
metrics, i.e., the total number of comments on the pull
request (comments) and the number of inline comments
pointing to the source code (comments_inline). In ad-
dition, developers might leave tendentious comments on
a pull request, according to whether they like or dislike
a pull request [16], [94]. Following the philosophy of so-

cial coding [21], it is interesting to analyze whether the
duplicate pull requests received more positive comments
would likely win out, compared to those with more negative
comments. To verify the hypothesis, we include two metrics:
the proportion of the comments expressing positive senti-
ment (comments_pos) and the proportion of the comments
expressing negative sentiment (comments_neg). To analyze
the sentiment in pull request comments, we use the state-
of-the-art sentiment analysis tool Senti4SD [30] retrained
on the latest GitHub data [66]. Integrators also rely on
automated testing tools to check pull request quality [42].
For example, prior study [108] found that the presence of CI
test failure has a negative effect on pull request acceptance.
To investigate this, we include three metrics CI, CLA, and
CR, to represent the check statuses of the most recent commit
in the pull request, which are returned by the three kinds
of check tools discussed in Section 3. Finally, we include a
metric revisions, i.e., how many times the pull request
has been updated, to indicate the maturity of and the efforts
that developers put on the pull request. The prior study [47]
showed that patch maturity is one of the major factors
affecting patch acceptance.

TABLE 13: Overview of metrics

Metric Mean St. Min Median Max

Submitter-level characteristics
prev_pullreqs 1.7e2 3.1e2 0 45.00 3.5e3
prev_prs_acc 0.45 0.26 0.0 0.47 1.0

first_pr_proj 0.29 0.45 0 0.00 1
followers 3.1e2 1.5e3 0 41.00 3.3e4
core_team 0.33 0.47 0 0.00 1

social_strength 0.62 0.46 0.0 1.00 1.0

Patch-level characteristics
early_arrival 0.50 0.50 0 0.50 1
files_changed 11.60 73.44 0 2.00 1.4e3

loc 6.0e2 5.0e3 0 17.00 9.9e4
test_inclusion 0.37 0.48 0 0.00 1

issue_tag 0.37 0.48 0 0.00 1
text_len 4.9e2 1.4e3 4 2.6e2 2.7e4

Review-level characteristics
revisions 0.83 2.11 0 0.00 27
comments 5.18 11.84 0 2.00 3.3e2

comments_inline 1.55 5.42 0 0.00 1.1e2
comments_pos 0.17 0.27 0.0 0.00 1.0
comments_neg 0.04 0.13 0.0 0.00 1.0

CI 0.10 1.05 -1.0 0.00 3.0
CLA -0.81 0.60 -1.0 -1.00 3.0
CR -0.84 0.56 -1.0 -1.00 3.0

6.2.2 Statistical Analysis

Our goal is to explain the relationship (if any) between the
selected factors and the binary response variable accept,
which indicates whether a duplicate pull request has been
accepted over its counterpart (1 for accepted and 0 for
not accepted). We use conditional logistic regression [33],
implemented in the mclogit package of R, to model the
likelihood of duplicate pull requests being accepted based

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

18

on the matched pair samples in our dataset (i.e., two paired
duplicate pull requests in which one is merged and the other
is rejected).

Similar to the analysis in Section 5.2, we add one level
metrics at a time and build a model instead of building one
model with all metrics at once. As a result, we compare
the fit of three models: a) Model 1, which includes only
the submitter-level variables, b) Model 2, which adds patch-
level variables, and c) Model 3, which adds review-level
variables. The variable transformation and multicollinear-
ity control in the model construction process is similar to
those in Section 5.2. Specifically, we remove three predic-
tors (prev_pullreqs_proj, prev_prs_acc_proj, and
first_pr) due to multicollinearity, which leaves us with
20 predictors, as shown in Table 13.

6.2.3 Analysis results
Overall, as shown in Table 14, both Model 2 and Model
3 have achieved remarkable performance given their high
value of AUC [60]. Since Model 3 performs better than
Model 2 (AUC: 0.890 vs 0.856) and they have obtained
consistent variable effects, we discuss their effects based on
Model 3.

As for the submitter-level predictors, only the predictor
prev_prs_acc has a significant, positive effect. This means
that duplicate pull requests submitted by experienced de-
velopers whose previous pull requests have a higher accep-
tance rate are more likely to be accepted. This is inline with
the prior findings about general pull request evaluation [42],
[47], [52], [116]. Perhaps surprisingly, the predictors relating
to developers’ standing (core_team and followers) and
their social connection to the project (social_strength)
are not significant by controlling for other confounds. Prior
studies have shown that pull requests from the developers
holding higher standing and having stronger social con-
nection with the project have higher acceptance rates [93],
[108]. However, our model does not achieve significant
effects. Except for the bias on our dataset, we present an
assumption that in the context of making a choice between
duplicates, integrators’ decision does not differentiate based
on the identity of the submitter in order to ensure fairness
within the community [19], [46]. This assumption deserves
a further investigation.

For patch-level metrics, early_arrival is highly sig-
nificant in the model. As expected, duplicate pull requests
submitted earlier have a higher likelihood of being accepted.
We can also observe that the predictor loc has a positive
effect, which indicates that duplicate pull requests changing
more LOCs are more likely to be accepted. This finding
is opposite with the results in previous studies [93], [101]
that large pull requests are less likely to be accepted. For a
pair of duplicate pull requests, the large one might provide
a more thorough solution or fix additional related issues
compared to the small one, which increases the probability
of acceptance under the same conditions. For example, there
is a typical comment left by the integrator: “Since the PR also
contains some test cleanup, I’ll merge that instead and close this
one. But thank you for the efforts, it is much appreciated!!”. In
addition to loc, the predictor inclusion_test presents a
significant, positive effect, which is similar to the effect on
pull request acceptance in general [42], [93], [108].

Finally, we discuss the review-level metrics. The pre-
dictor comments_inline has a significant, positive effect.
This indicates that duplicate pull requests receiving more in-
line comments have a higher chance of being accepted. Nev-
ertheless, prior study [93] showed that pull requests with a
high amount of discussion are less likely to be accepted. We
argue that duplicate pull requests receiving more comments,
especially inline comments, might mean that they has been
reviewed and discussed more thoroughly than their coun-
terparts. It requires less effort to be spent on the follow-up
review if integrators choose the highly discussed duplicates.
We notice that the predictor revisions has a positive
effect. This indicates that duplicate pull requests revised
more times are more likely to be accepted, which agrees with
what was already found in prior study [47]. As for comment
sentiment, unsurprisingly, duplicate pull requests receiving
more positive comments than negative comments are more
likely to be accepted. In terms of DevOps checking, as
expected, the predictor CI has a strong, positive effect when
its value is success or pending compared to when the
value is failure. This means that duplicate pull requests
have lower likelihood of being accepted if the CI test result
is failure. Our result confirms the finding in the previous
study [98], [108] that CI plays a key role in the process of
pull request evaluation, even in the context of duplication.
We do not achieve any result for other two DevOps tools
(i.e., CLA and CR), probably due to the imbalanced data (i.e.,
most of pull requests are not checked by these tools). We
plan to conduct further analysis focusing on these two kinds
of tools in future work.

6.3 Manual inspection.

The regression analysis examines the correlation between
several factors and integrators’ choice between duplicate
pull requests. It reveals what kind of duplicates are more
or less likely to be accepted. We further investigate the
exact reasons why integrators accept a duplicate pull re-
quest rather than its counterpart. This can also examine and
verify the results of the regression analysis. To this end, we
analyze the review comments of duplicate pull requests and
perform a card sort [82] to gain insight into the common
themes around integrators’ choice between duplicates. The
following sections present the card sorting process and the
identified reasons for integrators’ choice.

6.3.1 Card sorting
The card sorting analysis is conducted on 150 randomly se-
lected duplicate pairs. This sample yields a 90% confidence
level with a 6.28% error margin. This process includes the
following three steps.

Card preparation: For each randomly selected duplicate
pair, we read the dialogue and select all the comments ex-
pressing integrators’ choice preference between duplicates.
The selected comments are then recorded in a card.

Pair execution: For each card, two authors read the text
and sort the card into an existing category. If the authors
believe that the card does not belong to any of the existing
categories, they create a new category for that card. The
created category is labeled with a descriptive title to indicate

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

19

TABLE 14: Statistical models for the acceptance of duplicate pull requests

Model 1 Model 2 Model 3
response: accept = 1 response: accept = 1 response: accept = 1

Coeffs. Errors Signif. Coeffs. Errors Signif. Coeffs. Errors Signif.

log(prev_pullreqs + 0.5) -0.078 -1.832 -0.097 -1.987 * -0.091 -1.738
log(prev_prs_acc + 0.5) 1.597 7.884 *** 1.729 7.363 *** 1.644 6.617 ***

first_pr_proj TRUE -0.206 -1.270 -0.169 -0.911 -0.173 -0.868
log(followers + 0.5) 0.061 1.674 0.062 1.477 0.064 1.415

core_team TRUE 0.251 1.786 0.184 1.111 0.237 1.312
log(social_strength + 0.5) 0.383 2.590 ** 0.217 1.295 0.283 1.538

early_arrival TRUE - - - 0.534 6.865 *** 0.483 5.572 ***
log(loc + 0.5) - - - 0.462 5.701 *** 0.386 4.477 ***

log(files_changed + 0.5) - - - 0.388 2.341 * 0.200 1.135
test_inclusion TRUE - - - 0.239 1.034 0.203 2.805 *

issue_tag TRUE - - - 0.255 1.855 0.261 1.734
log(text_len + 0.5) - - - 0.152 2.253 * 0.133 1.877

log(revisions + 0.5) - - - - - - 0.275 2.563 *
log(comments + 0.5) - - - - - - 0.036 0.406

log(comments_inline + 0.5) - - - - - - 0.208 2.138 *
comments_pos>comments_neg TRUE - - - - - - 0.460 3.315 ***

CI Success - - - - - - 0.728 3.574 ***
CI Pending - - - - - - 1.175 5.226 ***

CLA Success - - - - - - 1.596 0.532
CLA Pending - - - - - - 2.948 0.984
CR Success - - - - - - 1.4e+01 0.022
CR Pending - - - - - - 1.4e+01 0.022

Akaike’s Information Criterion (AIC): 1411.52 1116.52 1014.19
Bayesian’s Information Criteria (BIC): 1436.39 1171.23 1118.64

Area Under the ROC Curve (AUC): 0.704 0.856 0.890

*** p <0.001, ** p <0.01, * p <0.05

its theme. For a card citing multiple themes, more copies of
the card are created for each cited theme. When the two
authors disagree about the category of a specific card, they
invite the other authors to discuss the discrepancy and vote
on the card.

Final analysis: After all cards have been sorted, the two au-
thors review each of the cards again to ensure the integrity
of the emerged categories and resolve potential inclusive
or redundant relations among categories. All categories are
then further grouped into higher-level categories. Finally,
to reduce the bias from the two authors, all authors of the
paper review and agree on the final taxonomy of categories.

6.3.2 Reasons for integrators’ choice
As shown in Table 15, we find 8 reasons for integrators’
choice between duplicates, which can be classified in to
two categories, i.e., technical assessment and non-technical
consideration. Note that the total frequency is greater than
150, because more than one reason might be cited in a
decision-making discussion. In the following, we discuss
each of reasons supported by examples.

TABLE 15: The taxonomy of the reasons for integrators’
choice between duplicates

Reason Frequency

Technical
assessment

Higher quality 20
Correctness 11
Broader coverage 7
Pushed to proper branch 4
Inclusion of test code 3

Non-technical
consideration

First-come, First-served 30
Active response 3
Encouraging newcomers 1

No explanation 76

Technical assessment.

Higher quality: If both of two duplicates have provided
correct implementation, integrators are inclined to choose
the one of higher quality. High quality has multiple manifes-
tations in our analysis, such as less affected files (e.g., “After

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

20

a short discussion internally, we are going to close this one in
favour of merging #7666. This is nothing more than the fact that
the other PR touches much less files”), and more outstanding
performance (e.g., “Closing this in favor of #10373, which
also contains performance improvements”). Given that higher-
quality implementation tends to receive more positive re-
view comments, this choice preference is consistent with
the regression analysis result that duplicate pull requests
receiving more positive comments are more likely to be
accepted.

Correctness: The acceptance of duplicate pull requests fun-
damentally depends on the correctness of its implementa-
tion, as described by an integrator “Looks like #2716 fixed
this though the quoting on that one is not 100% right and I
prefer your solution... Would you like to rebase yours on top
of head to use the ‘+=(...)’ operator?”. Since a failed status
check indicates problematic implementation, this preference
supports the finding in the regression analysis that duplicate
pull requests are less likely to be accepted if the status is
failure.

Broader coverage: Two pull requests might be partial du-
plicates in which one is the subset of the other one, as
a reviewer pointed “This PR is a subset of PR #16031”. In
such case, we observe that integrators prefer to choose the
large one that has covered more issues. Considering that the
broader coverage usually leads to more changed LOCs, this
choice preference is reflected in the regression analysis that
duplicate pull requests changing more LOCs are more likely
to be accepted.

Pushed to the proper branch: It is common for OSS projects
to follow a certain strategy on branch management. For
example, the maintenance branch in many projects accepts
only bug fixes, and new feature proposals are not accepted.
Therefore, integrators accept duplicate pull requests pushed
to the proper branch (e.g., “closing this PR as a duplicate of
#5193 (the latter is sent against 2.0 which is the branch to target
for bugfix)”).

Inclusion of test code: Most OSS project require contribu-
tors to provide necessary test codes for their modifications.
Therefore, the existence of test code in the duplicate pull
requests could help win some favor from integrators (e.g.,
“Thanks for the fix. Not sure we want to merge this or wait
for #3907 which also fixes it and adds a regression test for all
estimators”). This agrees with the result in the regression
analysis.

Non-technical consideration.

First-come, first-served: Integrators may follow the “first-
come, first-served” rule and accept duplicates arriving ear-
lier than those arriving later (e.g., “Actually, I see that #28026
is at the head of the merge queue right now, so it will probably
merge bfore this one, in which case we can just discard this
PR” and “Thank you very much for opening the pull request
@xxx. Sadly I have to close it nonetheless because someone
already opened one with the same changes before: #5761”). This
is consistent with the finding in the regression analysis that
duplicates submitted earlier have a higher possibility of
being accepted.

Active response: In the review process of a pull request,
contributors are usually requested to update their pull re-
quests until integrators are satisfied. Consequently, if a du-
plicate pull request has not been actively updated by its sub-
mitter, integrators might turn to its counterpart for which
integrators have received active responses (e.g., “@xxx The
original author of that PR hasn’t responded in a week. If you want
to fix the tests in your PR, we could merge this one. Your call”).

Encouraging newcomers: New contributors act as an in-
novation source for new ideas and are essential to the
survival of OSS projects [84]. Integrators have always tried
to retain newcomers and hope that they become long-term
contributors [112]. Consequently, duplicate pull requests
submitted by newcomers might be accepted by integrators
to encourage newcomers to make more contributions (e.g.,
“@xxx do you mind if we close this in favor of #12004 from a new
contributor?”). However, we find very few instances of this
choice preference. This is in line with the fact that the fac-
tors first_pr_proj and core_team show no significant
effects in the regression model. This finding can indicate
that when making a choice between duplicates, integrators
care more about the pull requests than the role of their
submitters.

No explanation. Integrators may make a choice without
leaving any further explicit explanation (e.g., “Replaced by
#5067” and “closing in favour of #10582”). For these cases,
we examine the submission time of the involved duplicate
pull requests. We find that most accepted pull requests
are those that are submitted earlier. Therefore, a possible
explanation for why integrators offer no explicit explanation
is that they think the “first-come, first-served” rule is the de-
fault standard in duplication choice. In addition, integrators
and contributors might have discussed the matter on other
communication media or face-to-face outside GitHub, and
as a result, integrators simply make a choice without more
explanation.

6.3.3 Complementary Investigation: Beyond rejection
In examining integrators’ comments, we also find that,
sometimes, making a decision between duplicates is more
complex than simple acceptance and rejection. Even though
integrators give their preference to one duplicate pull re-
quest, they might not directly and completely abandon the
other one. In the following, we present three instructive
scenarios where integrators make a decision beyond simple
close in dealing with the rejected duplicates.

Supplementary. Although it has been decided to accept one
duplicate pull request instead of another one, some integra-
tors would examine what could be reused from the rejected
one to enhance the accepted one. For example, although
rails/rails/#20697 was preferred over rails/rails/#20050, the
author of rails/rails/#20697 was asked to reuse the test code
from rails/rails/#20050 (“I prefer this behavior (and its sim-
pler implementation) Can you please cherry-pick the test from
#20050”). In such cases, integrators usually also gave credits
to the author of the rejected pull request for the incorpo-
rated codes (“along with adding an changelog entry listing both
authors” and “Can you credit him in the commit as well after you
squash and rebase”).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

21

Reopen and backup. Some rejected duplicate pull requests
were later reopened as useful backups, since their counter-
parts that were previously preferred could not be merged
finally. For example, facebook/react/#5236 was closed at first
because there was already a duplicate pull request face-
book/react/#5220. But later, facebook/react/#5236 was reopened
and merged due to the inactivity of facebook/react/#5220, as
the integrator said: “Other PR didn’t get updated today and the
failures were annoying on new PRs”.

Collaboration. Integrators might ask the author of the re-
jected duplicate pull request to improve the preferred one
together (e.g., “Could you jump on #3082 and help us review
it?” and “Please work with @xxx to test his code once he fixes
the merge conflicts”). We also found that some of the authors
were willing to offer their help (e.g., “Made a minor note on
the other PR to include one of the improvements” and “Looks like
they took my advice and used proc terminate() so another package
was not needed. Thanks for catching duplicate, but at least it was
not a waste. :)”)

RQ3: Pull requests with accurate and high-quality imple-
mentation, broad coverage, necessary test code, high maturity,
and deep discussion are more likely to be accepted. However,
integrators also make a choice based on non-technical con-
siderations, e.g., they may accept pull requests to respect the
arrival order and active response. For the rejected duplicates,
integrators might try to maximize their value, e.g., cherry-
picking the useful code.

7 DISCUSSION

Based on our analysis results and findings, we now provide
additional discussion and propose recommendations and
implications for OSS practitioners.

7.1 Main findings

7.1.1 Awareness breakdown
Maintaining awareness in global distributed development is
a significant concern [43], [92]. Developers need to pursue
“an understanding of the activities of others, which provides
a context for your own activity” [38]. As the most popular
collaborative development platform, GitHub has centralized
information about project statuses and developer activities
and made them transparent and visible [37], which help
developers to maintain awareness with less effort [48]. How-
ever, awareness breakdown still occurs and results in dupli-
cate work. Our findings about the specific contexts where
duplicates are produced, as shown in Section 5.1, highlight
three mismatches leading to awareness breakdown.

A mismatch between awareness requirements and actual
activities. In most community-based OSS projects, develop-
ers are self-organized [26], [34], and are allowed to work on
any part of the code according to individual’s interest and
time [43], [54]. Awareness requirements arise as a response
to developers’ free and spontaneous activities. Whenever a
developer decides to get engaged in a task, s/he should
ensure that no other developers have worked on the same
task. However, our findings show that some contributors

lack sufficient effort investment in awareness activities (Sec-
tion 5.1: Not searching for existing work, Overlooking linked pull
requests, and Missing existing claim). We assume that this is
due to the volunteer nature of OSS participation. For some
developers, especially the casual contributors and one time
contributors, a major motivation to make contributions is
to “scratch their own itch” [56], [69]. When they encounter a
problem, they code a patch to fix it and send the patch back
to the community. Some of them even do not care about the
final outcome of their pull requests [85]. It might be harder
to get them to spend more time to maintain awareness of
other developers. Automatic awareness tools can mitigate
this problem. Prior research has proposed to automatically
detect duplicates at pull request submission [57], [73] and
identify ongoing features from forks [113]. Furthermore,
we advocate for future research on seamlessly integrating
awareness tools to developers’ development environment
and designing intelligent and non-intrusive notification
mechanism.

A mismatch between awareness mechanisms and actual
demands. Currently, GitHub provides developers with a
wide range of mechanisms, e.g., following developers and
watching projects [37], to maintain a general awareness
about project status. However, developers can be over-
whelmed with a large-scale of incoming events in popular
projects (Section 5.1: Missing notifications). It is also impractical
for developers to always maintain overall awareness of a
project due to multitasking [95] and turnover [58]. Usually,
developers need to obtain on-demand awareness around a
specific task whenever deciding to submit a pull request,
i.e., gathering task-centric information to figure out people
interested in the same task. Currently, the main mechanisms
to meet this demand are querying issue and pull request
list and reading through the discussion history. As men-
tioned in Section 5.1, the support by these mechanisms is
not as adequate as expected due to information mixture
(Section 5.1: Overlooking linked pull requests and Missing existing
claims) and other technical problems (Section 5.1: Disappoint-
ing search functionality and Diversity of natural language usages).
Awareness mechanisms would be most useful if they can
fulfil developers’ actual demands in maintaining awareness.

A mismatch between awareness maintenance and actual
information exchange. Maintaining awareness is bidirec-
tional. Intuitively, it means that developers need to gather
external information to stay aware of others’ activities, with
the hope that I do not duplicate others’ work. But from a
global perspective, it also means developers should actively
share their personal information that can be gathered by
others, with the hope that others do not duplicate my work.
Our findings show that some developers do not timely
announce their plans (Section 5.1: Implementing without claiming
first) and link their work to the associated issue (Section 5.1:
Lack of links). This hinders other developers’ ability to gather
adequate contextual information. Although prior work [18],
[29], [92] has extensively studied on how to help developers
track work and get information, more research attention
should be paid to encouraging developers to share infor-
mation. For example, it would be interesting to investigate
whether developers’ willingness to share information is
affected by the characteristics of collaboration mechanisms

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

22

and communication tools.
Obviously, awareness tools are important for OSS de-

velopers to stay aware of each other. However, no tool or
mechanism can prevent all awareness breakdown entirely. A
better understanding of the importance of group awareness
and better use of available technologies can help developers
ensure that their individual contributions do not cause
accidental duplicates.

7.1.2 The paradox of duplicates
Generally speaking, both project integrators and contribu-
tors hope to prevent duplicate pull requests, because dupli-
cates can waste their time and effort, as shown in Section 4.
This is also reflected in their comments, e.g., “it probably
makes sens to just center around a single effort”, “No need to do
the same thing in two PRs”, and “Oops! Sorry, did not mean to
double up”. However, when duplicates are already produced,
potential value might be mined from them as shown in
Section 6.3.3. From our findings, we notice two interesting
paradoxes of duplicates.

Redundancy vs. alternative. In many cases, duplicate pull
requests change pretty much the same codes, which only
bring unnecessary redundance. While in some cases, dupli-
cates implemented in different approaches provide alterna-
tive solutions, as a developer put it: “The pull requests are
different, so maybe it is good there are two”. In such cases,
project integrators have a higher chance to accept a better
patch. However, this comes at a price. Integrators have
to invest more time to compare the details of duplicates
in order to clearly disclose the difference between them.
Ensuring that their effort is not wasted in coping with
duplicates, but maximizing the disclosure and adoption of
additional value provided by each duplicate, is a trade-off
integrators should be aware of.

Competition vs. collaboration. At first sight, authors of
duplicate pull requests face a competition in getting their
own patches accepted. For example, one contributor tried
to persuade integrators to choose his pull request rather
than another one: “Pick me! Pick me! I was first! :)”. Nev-
ertheless, we found some cases where the authors of dupli-
cates worked together towards a better patch by means of
mutual assessment and negotiated incorporation, as shown
in Section 6.3.3. According to developers, the collaboration
is also an opportunity for both the authors to learn from
each other’s strength (“I looked at some awesome code that
@xxx wrote to fix this issue and it was so simple, I just did not
fully understand the issue I was fixing”). Standing for their
own patches, but seeking for collaboration and learning, is
a trade-off the authors of duplicates should be aware of.

7.1.3 Decision-making in Either/Or contexts
In the general context of pull request evaluation, integrators
are answering a Yes/No question “whether to accept this pull
request?”, and the considered factors are mainly relating to
individual pull requests. While in the context of making
a choice between duplicates, integrators are answering an
Either/Or question “whether to choose this duplicate pull re-
quest or the other one?”, and integrators would evaluate the
duplicates from a comparative perspective. Based on our
findings about integrators’ preference between duplicates,

as presented in Section 6, we infer two prominent character-
istics of integrators’ decisions in the Either/Or contexts.

Choose the patch, not the author: We find that when
making decisions between duplicates, integrators have a
preference to consider patch-level metrics (e.g., arrival or-
der) and review-level metrics (e.g., CI test results) instead of
submitter-level metrics (e.g., the submitter’s identity). Com-
pared to submitter-level metrics, patch-level and review-
level metrics are more objective evidence. While the sub-
mitter’s identity can be used to make inferences about the
quality and trustworthiness of a pull request [42], [93],
decisions made on the basis of objective evidence might look
more fair and rational in the context of selection between
duplicates. The benefits of such decision strategy include
ensuring the fairness within the communities [19], [46] and
eliminating integrators’ pressure of explaining the rejection
of duplicates [42].

Invested effort matters: We find that integrators prefer
duplicate pull requests that have been highly discussed
and revised a couple of times. While a higher number of
comments and revisions might indicate that a pull request
was not perfect and integrators have requested changes to
update it, it also reflects that the pull request has been
thoroughly reviewed and improved, and both integrators
and the submitter have invested considerable effort. The
invested effort on one duplicate pull request cannot be
“transferred” to its counterpart because duplicate pull re-
quests might have different implementation details and each
of them has to be carefully reviewed. Given the facts that
time is the top challenge faced by integrators [42] and that
asking for more work from contributors to improve their
work might be difficult [42], [85], choosing the thoroughly
discussed and revised duplicate pull requests might be a
cost-efficient and safe decision.

7.2 Suggestions for contributors
To avoid unintentional duplicate pull requests, contributors
may follow a set of best contributing practices when they
are involved in the pull-based development model.

Adequate checking: Many duplicates were produced be-
cause contributors did not conduct adequate checking to
make sure that no one else was working on the same thing
(Section 5.1: Not searching for existing work, Overlooking linked
pull requests, and Missing existing claims). We recommend that
contributors should perform at least three kinds of checking
before starting their work: i) reading through the whole
discussion of an issue and checking whether anyone has
claimed the issue; ii) examining each of the pull requests
linked to an issue and checking whether any of them is
an ongoing work to solve the issue; and iii) performing
searches with different keywords against open and closed
pull requests and issues, and carefully checking where sim-
ilar work already exists.

Timely completion: Quite a number of OSS developers
contribute to a project at their spare time, and some of them
even switch between multiple tasks. As a result, it might
be difficult for them to complete an individual task in a
timely fashion. However, we still suggest that contributors
should quickly accomplish each work in proper order, e.g.,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

23

one item at a time, to shorten their local duration. This can
make their work publicly visible earlier, which can, to some
extent, prevent others from submitting duplicates (Section 5.1:
Overlong local work).

Precise context: Providing complete and clear textual in-
formation for submitted pull requests is helpful for other
contributors to retrieve these pull requests and acquire an
accurate and comprehensive understanding of them (Sec-
tion 5.1: Diversity of natural language usage). In addition, if a pull
request is solving a tracked issue, adding the issue reference
in the pull request description, e.g., “fix #[issue number]”,
can avoid some duplicates because of the increased degree
of awareness. (Section 5.1: Lack of links).

Early declaration: Zhou et al. [114] already suggested that
claiming an issue upfront is associated with a lower chance
of redundant work. In our study, we find several actual
instances of duplicates where integrators clearly pointed
out the contributors should claim the issues first and then
implement the patches (e.g., “@xxx, btw, it is a good idea to
comment on an issue when you start working on it, so we can
coordinate better and avoid duplication of effort”). We would
like to emphasize again the importance of early declaration
which should become a best practice developers can fol-
low in OSS collaborative development. Compared with late
report, early declaration can timely broadcast contributors’
intention to the community to get the attention of interested
parties, so that they can avoid some accidental duplicate
work (Section 5.1: Implementing without claiming first)

Argue for their patches: As shown in Section 6, various
factors can be examined when integrators make decisions
between duplicates. The authors of duplicates should ac-
tively argue for their own pull requests by explicitly stating
the strength of their patches, especially if they have pro-
posed a different approach and provided additional bene-
fits. They can also review each of other’s patch and discuss
the difference before waiting for an official statement from
integrators. This can provide a solid basis for integrators to
make informed decisions about which duplicate should be
accepted. Moreover, if the value of a duplicate pull request
has been explicitly stated, even it is finally closed, its useful
part has a higher chance to be noticed and cherry-picked by
integrators, as shown in Section 6.3.3.

7.3 Suggestions for core team
The core team of an OSS project, acting as the integrator
and maintainer of the project, is responsible for establish-
ing contribution standards and coordinating contributors’
development. To achieve the long-term and continuous sur-
vival of the project, the core team may also follow some best
practices.

Evident guidelines: Although most projects have warned
contributors not to submit duplicate issues and pull re-
quests, the advice are usually too general. We suggest
projects to make the advice more visible, specific, and easy-
follow. For example, projects can use a section to list the
typical contexts where duplicates occur, as presented in
Section 5.1, and itemize the specific actions should be taken
to avoid duplicates, as we have suggested for contributors
(Section 7.2: Adequate checking).

Explaining decisions: Integrators must make a choice be-
tween duplicate pull requests, which means that they have
to reject someone. For contributors whose pull requests
have been rejected, they might be pleased to get feedback
and explanation about why their work has been rejected
rather than simply closing their pull requests. However,
we observed nearly 50% of our qualitative samples where
decisions were made without any explanation (as shown in
Table 15). Even worse, we identified that the rough expla-
nation (e.g., “Thanks for your PR but this fix is already merged
in #20610”) would be likely to make the contributor upset
(“’already’ implies I submitted my PR later than that, rather than
nearly a year earlier ;) But at least it’s fixed”). In that case,
the integrator had to give an additional apology (“sorry,
sometimes a PR falls in the cracks and a newer one gets the
attention. We have improved the process in hopes to avoid this but
we still have a big backlog in which these things are present”) to
mitigate the negative effect. In the future, a careful analysis
should be designed to examine the effectiveness of this
suggestion based on controlled experiments.

7.4 Suggestions for design of platforms

Online collaborating platforms such as GitHub have de-
signed and provided numerous mechanisms and tools to
support OSS development. However, the practical problem
of duplicate contributions proves that the platforms need to
be improved.

Claim button: In order to make it more efficient for devel-
opers to maintain awareness of each other, we envision a
new mechanism called Claim which is described as follows.
For a GitHub issue, each interested developer can click the
Claim button on the issue page to claim that s/he is going
to work on the issue. The usernames of all claimers are
listed together below the Claim button. Every time the Claim
button is clicked, an empty pull request is automatically
generated and linked to the claimer’s username in the issue
claimer list. Moreover, claimers have a chance to report their
plans about how to fix the issue in the input box displayed
when the Claim button is clicked. The reported plans would
be used to describe the empty pull request. Subsequently,
claimers perform updates of the empty pull request until
they produce a complete patch. All important updates on
the empty pull request, e.g., new commits pushed, would
be displayed in the claimer list. On the one hand, this
mechanism makes it more convenient for developers to
share their intentions and activities through just clicking
a button. On the other hand, developers can efficiently
catch and track other developers’ intentions and activities
by simply checking the issue claimer list.

Duplicate detection: As contributors complained, e.g., “...
I wish there has been some automated method to detect pending
PR per file basis. This could save lot of work duplicacy. ...”, or “
It’s strange that GitHub isn’t complaining about this, because it’s
an exact dup of #5131 which was merged already”, an automatic
detection tool of duplicates is missing in GitHub. Such a tool
can help integrators detect duplicates in a timely manner
and prevent them spending resources on the redundant
effort of evaluating duplicates separately. Therefore, GitHub
can learn from Stack Overflow and Bugzilla to recommend

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

24

similar work when developers are creating pull requests
by utilizing various similarity measures, e.g., title and code
changes. The features discussed in Section 5.2.1 can also be
integrated to enhance the recommendation system.

Reference reminder: Since developers might overlook
linked pull requests to issues (Section 5.1: Overlooking linked
pull requests), platforms can actively remind developers of
existing pull requests linked to the same issue at pull request
submission time. The goal of this functionality is similar
to that of the duplicate detection tool. However, it can be
implemented in a more straightforward way. For example,
whenever developers add an issue reference in filling a pull
request, a pop-up box can be displayed next to the issue
reference to list the existing pull requests linked to that
issue.

Duplicate comparison: As discussed in Section 6, when
integrators make a choice between duplicate pull requests,
they consider several factors. Platforms can support du-
plicate comparison to make the selection process more
efficient. For example, platforms can automatically extract
several features of compared duplicates, e.g., inclusion of
test codes and the contributor’s experience, and display
these features in a comparison format to clearly show the
difference between duplicate pull requests and speed up the
selection process.

Online incorporation: As presented in Section 6.3.3, inte-
grators sometimes prefer to incorporate one duplicate pull
request into the other one to promote patch thoroughness.
Currently, the typical way to incorporate a pull request PRi

into another pull request PRj is as follows: i) adding the
head branch of PRi as a remote branch in the corresponding
local repository of PRj , ii) fetching the remote branch to
the local repository, iii) cherry-picking the needed commits
from or rebase onto the remote branch, and iv) updating
PRj by synchronizing the changes from local repository to
the head branch of PRj . Developers might also need to
update the commit message or project changelog to give
credit for the incorporated code. The whole incorporation
process can be too complex for newcomers to undertake.
Moreover, this process seems to be tedious for incorporating
trivial changes. GitHub can support online incorporation of
duplicate pull requests. For example, it can allow developers
to pick the needed code by clicking buttons in the UI, and
the credit is given to the picked code by automatically
updating the commit message and changelog.

8 THREATS TO VALIDITY

In this section, we discuss threats to construct validity,
internal validity and external validity, which may affect the
results of our study.

Construct Validity: In the definition of sequential relation-
ships between two duplicates, two time points are critical,
i.e., T-Creation and T-Evaluation, which stand for the starting
times of local work and online evaluation, respectively. In
the paper, we set T-Evaluation as the submission time of
pull request, in accordance with its definition. Nevertheless,
we cannot obtain the exact value of T-Creation because
there is no information recording when a contributor starts

local work. We set T-Creation as the creation time of the
first commit contained in a pull request. As a result, the
observed value of T-Creation is actually later than its real
value because it can be certain that the contributor must
first start the local work and then later submit the first
commit. It is possible that we introduce some bias to our
quantitative study when we set T-Creation to the creation
time of the first commit. For duplicate pairs of overlapping
or inclusive relations, the bias does not matter much because
they already intersect with each other. However, the bias for
duplicate pairs of exclusive relations needs careful attention
since inaccurate value of T -Creationdup may affect whether
the relation is exclusive. Indeed, in our quantitative study of
the exclusive interval (Table 8), we find that the majority of
duplicate pairs of exclusive relations have relatively long
intervals, which means that a minor shift in the value of
T -Creationdup is unlikely to affect the original relation.
Therefore, setting T-Creation as the creation time of the first
commit is acceptable in practice.

Internal Validity: In the manual analysis of integrators’
choice between duplicate pull requests, we target a sampled
subset of duplicate pull requests. It is possible that we have
missed some other cases that are not in the sampled subset.
However, the items in the subset are randomly selected, and
the sample size is of high confidence level, as described in
Section 6.3. Therefore, missed cases (if any), accounting for a
very small proportion of the whole, would not significantly
change our findings.

External Validity: The threat to external validity relates to
the generalizability of our findings. To mitigate this threat,
our empirical study was conducted on 26 projects hosted
on GitHub, covering a diversity of programming languages
and application domains. However, it is still a small sample
given that 100 million repositories [1] have been hosted on
GitHub, let alone there are other social coding sites such
as GitLab and BitBucket. In the future, we plan to extend
our study by including more projects from jointCloud [99]
development platforms.

9 CONCLUSION

In this study, we investigated the problem of duplicate
contributions in the context of pull-based distributed de-
velopment. The goal of our study is to better understand
the influences of duplicate pull requests during collabo-
rative development, the context in which duplicate pull
requests occur, and the alternative preference of integrator
between duplicate pull requests. We conducted an empirical
study on 26 GitHub projects to achieve the goal. We found
that duplicate pull requests slow down the review process
and require more reviewers for extended discussions. We
observed that the inappropriateness of OSS contributors’
work patterns (e.g., not checking for existing work) and
the shortcomings of their collaboration environment (e.g.,
unawareness of parallel work) would result in duplicates.
We also observed that duplicate pull requests are signifi-
cantly different from non-duplicate pull requests in terms of
project-level characteristics (e.g., area hotness and number of
active core team members), submitter-level characteristics (
e.g., experience and social connection to project), and patch-
level characteristics (e.g., change type and issue visibility).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

25

We found that duplicate pull requests with accurate and
high-quality implementation, broad coverage, necessary test
codes, high maturity, and deep discussion, are more likely
to be accepted. We also found that integrators might make
a choice based on non-technical considerations, e.g., they
may accept pull requests to respect arrival order and active
response.

Based on the findings we recommend that OSS contribu-
tors should always perform sufficient verification against
existing work before they start working on a task. Con-
tributors are expected to declare their intentions as soon
as possible and prepare their work with complete related
information to make their work highly visible early on.
Intergrators should provide contributors with visible and
detailed guidelines on how to avoid duplicated work. Social
coding platforms are expected to enhance the awareness
mechanisms in order to make it more effective and ef-
ficient for developers to stay aware of each other. It is
also meaningful to provide practical service and tools to
support automatic identification of duplicates, visualized
comparison between duplicates, etc..

Last but not least, our findings point to several future
research directions. Researchers can design awareness tools
to increase developers’ awareness of others activities. Such
tools not only help prevent duplicate effort on the same
tasks but also have the potential functionality to link related
contributors for better coordination. Moreover, we think
it is meaningful to investigate how integrators’ practices
in managing the contributors’ conflicts affect contributors’
continuous participation.

ACKNOWLEDGMENTS

This work was supported by National Grand R&D Plan
(Grant No. 2018AAA0102304) and National Natural Science
Foundation of China (Grant No. 61702534).

REFERENCES

[1] About github. https://github.com/about. Accessed: 2019-10-19.
[2] About github issue. http://help.github.com/en/articles/about-

issues. Accessed: 2019-10-19.
[3] Bugzilla. http://www.bugzilla.org. Accessed: 2019-10-19.
[4] Code climate. https://codeclimate.com. Accessed: 2019-10-19.
[5] Contributing to scikit-learn. https://scikit-learn.org/dev/

developers/contributing.html. Accessed: 2020-6-11.
[6] Contributing to the ansible documentation. https://docs.ansible.

com/ansible/devel/community/documentation contributions.
html#community-documentation-contributions. Accessed:
2020-6-11.

[7] The duppr dataset. https://github.com/whystar/MSR2018-
DupPR. Accessed: 2019-10-19.

[8] Get the combined status for a specific ref. https:
//developer.github.com/v3/repos/statuses/#get-the-
combined-status-for-a-specific-ref. Accessed: 2020-05-13.

[9] Github. http://github.com. Accessed: 2019-10-19.
[10] Gitlab. http://gitlab.com. Accessed: 2019-10-19.
[11] Good first issues in the project pandas. https://github.com/

pandas-dev/pandas/labels/good%20first%20issue. Accessed:
2020-6-11.

[12] How should duplicate questions be handled? https:
//meta.stackexchange.com/questions/10841/how-should-
duplicate-questions-be-handled. Accessed: 2019-10-19.

[13] Stack overflow. http://stackoverflow.com. Accessed: 2019-10-19.
[14] Travis-ci. https://www.travis-ci.org. Accessed: 2019-10-19.
[15] Understanding the github flow. https://guides.github.com/

introduction/flow/. Accessed: 2020-8-8.

[16] Bram Adams, Bram Adams, Bram Adams, and Marco Ortu. Do
developers feel emotions? an exploratory analysis of emotions in
software artifacts. In Proceedings of the 11th working conference on
mining software repositories, pages 262–271, 2014.

[17] Muhammad Ahasanuzzaman, Muhammad Asaduzzaman,
Chanchal K Roy, and Kevin A Schneider. Mining duplicate
questions in stack overflow. In Proceedings of the 13th International
Conference on Mining Software Repositories, pages 402–412. ACM,
2016.

[18] Ritu Arora, Sanjay Goel, and Ravi Kant Mittal. Supporting col-
laborative software development over github. Software: Practice
and Experience, 47(10):1393–1416, 2017.

[19] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W
Godfrey. The secret life of patches: A firefox case study. In Pro-
ceedings of the 2012 19th Working Conference on Reverse Engineering,
pages 447–455. IEEE, 2012.

[20] Olga Baysal, Oleksii Kononenko, Reid Holmes, and Michael W.
Godfrey. Investigating technical and non-technical factors in-
fluencing modern code review. Empirical Software Engineering,
21(3):1–28, 2015.

[21] Andrew Begel, Jan Bosch, and Margaret Anne Storey. Social net-
working meets software development: Perspectives from github,
msdn, stack exchange, and topcoder. IEEE Software, 30(1):52–66,
2013.

[22] Moritz Beller, Georgios Gousios, and Andy Zaidman. Oops, my
tests broke the build: An analysis of travis ci builds with github.
In Proceedings of 2017 IEEE/ACM 14th International Conference on
Mining Software Repositories, pages 356–367, 2017.

[23] Yoav Benjamini and Yosef Hochberg. Controlling the false
discovery rate: A practical and powerful approach to multiple
testing. Journal of the Royal Statistical Society, 57(1):289–300, 1995.

[24] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and
Sunghun Kim. Duplicate bug reports considered harmful really?
In Proceedings of 2008 IEEE International Conference on Software
Maintenance, pages 337–345. IEEE, 2008.

[25] Christian Bird, Alex Gourley, and Prem Devanbu. Detecting
patch submission and acceptance in oss projects. In Proceedings of
the Fourth International Workshop on Mining Software Repositories,
page 26. IEEE Computer Society, 2007.

[26] Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov,
and Premkumar Devanbu. Latent social structure in open source
projects. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 24–35.
ACM, 2008.

[27] Hudson Borges, Andre Hora, and Marco Tulio Valente. Under-
standing the factors that impact the popularity of github repos-
itories. In Proceedings of the 2016 IEEE International Conference on
Software Maintenance and Evolution, pages 334–344. IEEE, 2016.

[28] Amiangshu Bosu, Jeffrey C. Carver, Christian Bird, Jonathan
Orbeck, and Chris Chockley. Process aspects and social dy-
namics of contemporary code review: Insights from open source
development as well as industrial practice at microsoft. IEEE
Transactions on Software Engineering, pages 1–1, 2016.

[29] Fabio Calefato and Filippo Lanubile. Socialcde: a social aware-
ness tool for global software teams. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pages 587–
590, 2013.

[30] Fabio Calefato, Filippo Lanubile, Federico Maiorano, and Nicole
Novielli. Sentiment polarity detection for software development.
Empirical Software Engineering, (3):1–31, 2017.

[31] Scott Chacon and Ben Straub. Pro Git (Second Edition). Apress,
2018.

[32] Patricia Cohen, Stephen G West, and Leona S Aiken. Applied
multiple regression/correlation analysis for the behavioral sciences.
Psychology Press, 2014.

[33] Margaret A Connolly and Kung-Yee Liang. Conditional logis-
tic regression models for correlated binary data. Biometrika,
75(3):501–506, 1988.

[34] Kevin Crowston, Kangning Wei, Qing Li, U Yeliz Eseryel, and
James Howison. Coordination of free/libre open source software
development. 2005.

[35] Kevin Crowston, Kangning Wei, Qing Li, and James Howison.
Core and periphery in free/libre and open source software team
communications. In Proceedings of the 39th Annual Hawaii Interna-
tional Conference on System Sciences, volume 6, pages 118a–118a.
IEEE, 2006.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

26

[36] Laura Dabbish, Colleen Stuart, Jason Tsay, and James Herbsleb.
Leveraging transparency. IEEE software, 30(1):37–43, 2013.

[37] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. So-
cial coding in github: transparency and collaboration in an open
software repository. In Proceedings of the ACM 2012 Conference
on Computer Supported Cooperative Work, pages 1277–1286. ACM,
2012.

[38] Paul Dourish and Victoria Bellotti. Awareness and coordination
in shared workspaces. In Proceedings of the 1992 ACM conference
on Computer-supported cooperative work, pages 107–114, 1992.

[39] Denae Ford, Mahnaz Behroozi, Alexander Serebrenik, and Chris
Parnin. Beyond the code itself: how programmers really look at
pull requests. In 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Society (ICSE-SEIS),
pages 51–60. IEEE, 2019.

[40] Georgios Gousios, Martin Pinzger, and Arie Van Deursen. An ex-
ploratory study of the pull-based software development model.
In Proceedings of the 36th International Conference on Software Engi-
neering, pages 345–355. ACM, 2014.

[41] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli.
Work practices and challenges in pull-based development: the
contributor’s perspective. In Proceedings of the 38th International
Conference on Software Engineering, pages 285–296. IEEE, 2016.

[42] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and
Arie Van Deursen. Work practices and challenges in pull-based
development: the integrator’s perspective. In Proceedings of the
37th International Conference on Software Engineering, pages 358–
368. IEEE, 2015.

[43] Carl Gutwin, Reagan Penner, and Kevin Schneider. Group
awareness in distributed software development. In Proceedings of
the 2004 ACM Conference on Computer Supported Cooperative Work,
pages 72–81. ACM, 2004.

[44] Ahmed E Hassan. Predicting faults using the complexity of
code changes. In Proceedings of the 31st International Conference on
Software Engineering, pages 78–88. IEEE Computer Society, 2009.

[45] Abram Hindle, Michael W Godfrey, and Richard C Holt. Release
pattern discovery: A case study of database systems. In Proceed-
ings of 2007 IEEE International Conference on Software Maintenance,
pages 285–294. IEEE, 2007.

[46] Chris Jensen and Walt Scacchi. Role migration and advancement
processes in ossd projects: A comparative case study. In Software
Engineering, 2007. ICSE 2007. 29th International Conference on, 2007.

[47] Yujuan Jiang, Bram Adams, and Daniel M German. Will my
patch make it? and how fast?: Case study on the linux kernel.
In Proceedings of the 10th Working Conference on Mining Software
Repositories, pages 101–110. IEEE Press, 2013.

[48] Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer,
and Daniel M. German. Open source-style collaborative develop-
ment practices in commercial projects using github. In Proceedings
of 2015 International Conference on Software Engineering, 2015.

[49] Yvonne Kammerer and Peter Gerjets. The role of search result
position and source trustworthiness in the selection of web search
results when using a list or a grid interface. International Journal
of Human-Computer Interaction, 30(3):177–191.

[50] Frank Konietschke, Ludwig A Hothorn, and Edgar Brunner.
Rank-based multiple test procedures and simultaneous confi-
dence intervals. Electronic Journal of Statistics, 6:738–759, 2012.

[51] Oleksii Kononenko, Olga Baysal, and Michael W Godfrey. Code
review quality: how developers see it. In Proceedings of the 2016
IEEE/ACM 38th International Conference on Software Engineering,
pages 1028–1038. IEEE, 2016.

[52] Oleksii Kononenko, Tresa Rose, Olga Baysal, Michael Godfrey,
Dennis Theisen, and Bart De Water. Studying pull request
merges: a case study of shopify’s active merchant. In Proceedings
of the 40th International Conference on Software Engineering: Software
Engineering in Practice, pages 124–133, 2018.

[53] Karim R Lakhani and Eric Von Hippel. How open source soft-
ware works:free user-to-user assistance. In Produktentwicklung
mit virtuellen Communities, pages 303–339. Springer, 2004.

[54] Karim R Lakhani and Robert G Wolf. Why hackers do what they
do: Understanding motivation and effort in free/open source
software projects. 2003.

[55] Alina Lazar, Sarah Ritchey, and Bonita Sharif. Improving the ac-
curacy of duplicate bug report detection using textual similarity
measures. In Proceedings of the 11th Working Conference on Mining
Software Repositories, pages 308–311. ACM, 2014.

[56] Amanda Lee, Jeffrey C Carver, and Amiangshu Bosu. Under-
standing the impressions, motivations, and barriers of one time
code contributors to floss projects: a survey. In Proceedings of the
39th International Conference on Software Engineering, pages 187–
197. IEEE Press, 2017.

[57] Zhixing Li, Gang Yin, Yue Yu, Tao Wang, and Huaimin Wang.
Detecting duplicate pull-requests in github. In Proceedings of the
9th Asia-Pacific Symposium on Internetware, page 20. ACM, 2017.

[58] Bin Lin, Gregorio Robles, and Alexander Serebrenik. Developer
turnover in global, industrial open source projects: Insights from
applying survival analysis. In Proceedings of the 12th International
Conference on Global Software Engineering, pages 66–75. IEEE, 2017.

[59] Jeffrey D. Long, Feng Du, and Norman Cliff. Ordinal Analysis of
Behavioral Data. John Wiley & Sons, Inc., 2003.

[60] Charles E Metz. Basic principles of roc analysis. In Seminars in
nuclear medicine, volume 8, pages 283–298. Elsevier, 1978.

[61] George A Miller. Wordnet: a lexical database for english. Com-
munications of the ACM, 38(11):39–41, 1995.

[62] Yuji Mizobuchi and Kuniharu Takayama. Two improvements to
detect duplicates in stack overflow. In Proceedings of the 2017
IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering, pages 563–564. IEEE, 2017.

[63] Audris Mockus and Lawrence G Votta. Identifying reasons for
software changes using historic databases. In Proceedings of the
2000 International Conference on Software Maintenance, pages 120–
130, 2000.

[64] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka,
Kouichi Kishida, and Yunwen Ye. Evolution patterns of open-
source software systems and communities. In Proceedings of the
International Workshop on Principles of Software Evolution, pages
76–85. ACM, 2002.

[65] Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N Nguyen, David
Lo, and Chengnian Sun. Duplicate bug report detection with
a combination of information retrieval and topic modeling. In
Proceedings of the 27th IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 70–79. ACM, 2012.

[66] Nicole Novielli, Fabio Calefato, Davide Dongiovanni, Daniela
Girardi, and Filippo Lanubile. Can we use se-specific senti-
ment analysis tools in a cross-platform setting? arXiv preprint
arXiv:2004.00300, 2020.

[67] Jason W Osborne and Amy Overbay. The power of outliers
(and why researchers should always check for them). Practical
assessment, research & evaluation, 9(6):1–12, 2004.

[68] Raphael Pham, Leif Singer, Olga Liskin, Fernando Figueira Filho,
and Kurt Schneider. Creating a shared understanding of testing
culture on a social coding site. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering, 2013.

[69] Gustavo Pinto, Igor Steinmacher, and Marco Aurélio Gerosa.
More common than you think: An in-depth study of casual
contributors. In Proceedings of the 23rd International Conference on
Software Analysis, Evolution, and Reengineering, volume 1, pages
112–123. IEEE, 2016.

[70] Luca Ponzanelli, Simone Scalabrino, Gabriele Bavota, Andrea
Mocci, Rocco Oliveto, Massimiliano Di Penta, and Michele Lanza.
Supporting software developers with a holistic recommender
system. In Proceedings of the 38th International Conference on
Software Engineering, 2017.

[71] Mohammad Masudur Rahman and Chanchal K Roy. An insight
into the pull requests of github. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 364–367, 2014.

[72] Fred Ramsey and Daniel Schafer. The statistical sleuth: a course in
methods of data analysis. Cengage Learning, 2012.

[73] Luyao Ren, Shurui Zhou, Christian Kästner, and Andrzej Wa-
sowski. Identifying redundancies in fork-based development. In
Proceedings of 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 230–241.
IEEE, 2019.

[74] Peter C Rigby and Christian Bird. Convergent contemporary
software peer review practices. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, pages 202–
212. ACM, 2013.

[75] Peter C Rigby, Daniel M German, Laura Cowen, and Margaret-
Anne Storey. Peer review on open-source software projects:
Parameters, statistical models, and theory. ACM Transactions on
Software Engineering and Methodology (TOSEM), 23(4):35, 2014.

[76] Peter C Rigby, Daniel M German, and Margaretanne Storey. Open

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

27

source software peer review practices: a case study of the apache
server. pages 541–550, 2008.

[77] Peter C Rigby and Margaret-Anne Storey. Understanding broad-
cast based peer review on open source software projects. In 2011
33rd International Conference on Software Engineering (ICSE), pages
541–550. IEEE, 2011.

[78] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detec-
tion of duplicate defect reports using natural language process-
ing. In Proceedings of the 29th International Conference on Software
Engineering, pages 499–510. IEEE Computer Society, 2007.

[79] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Contin-
uous integration, delivery and deployment: a systematic review
on approaches, tools, challenges and practices. IEEE Access,
5:3909–3943, 2017.

[80] Jyoti Sheoran, Kelly Blincoe, Eirini Kalliamvakou, Daniela
Damian, and Jordan Ell. Understanding” watchers” on github.
In Proceedings of the 11th working conference on mining software
repositories, pages 336–339, 2014.

[81] Rodrigo Souza and Bruno C Da Silva. Sentiment analysis of
travis ci builds. In Proceedings of 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories, pages 459–462, 2017.

[82] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld
Media, 2009.

[83] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and
David Redmiles. Social barriers faced by newcomers placing
their first contribution in open source software projects. In
Proceedings of the 18th ACM Conference on Computer Supported
Cooperative Work & Social Computing, pages 1379–1392. ACM,
2015.

[84] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and
Marco Aurélio Gerosa. Overcoming open source project entry
barriers with a portal for newcomers. In Proceedings of the 38th
International Conference on Software Engineering, pages 273–284.
ACM, 2016.

[85] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and
Marco Aurélio Gerosa. Almost there: A study on quasi-
contributors in open-source software projects. In Proceedings
of the 2018 IEEE/ACM 40th International Conference on Software
Engineering, pages 256–266. IEEE, 2018.

[86] Klaas-Jan Stol and Brian Fitzgerald. Two’s company, three’s a
crowd: a case study of crowdsourcing software development. In
Proceedings of the 36th International Conference on Software Engineer-
ing, pages 187–198. ACM, 2014.

[87] Chengnian Sun, David Lo, Siau-Cheng Khoo, and Jing Jiang.
Towards more accurate retrieval of duplicate bug reports. In
Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pages 253–262. IEEE Computer
Society, 2011.

[88] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-
Cheng Khoo. A discriminative model approach for accurate du-
plicate bug report retrieval. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, pages 45–54.
ACM, 2010.

[89] Yida Tao, Donggyun Han, and Sunghun Kim. Writing acceptable
patches: An empirical study of open source project patches.
In Proceedings of 2014 IEEE International Conference on Software
Maintenance and Evolution, pages 271–280. IEEE, 2014.

[90] Patanamon Thongtanunam, Shane Mcintosh, Ahmed E. Hassan,
and Hajimu Iida. Revisiting code ownership and its relationship
with software quality in the scope of modern code review. In Pro-
ceedings of the 38th International Conference on Software Engineering,
2017.

[91] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey.
How do programmers ask and answer questions on the web?:
Nier track. In Proceedings of the 2011 33rd International Conference
on Software Engineering, pages 804–807. IEEE, 2011.

[92] Christoph Treude and Margaret-Anne Storey. Awareness 2.0:
staying aware of projects, developers and tasks using dashboards
and feeds. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 1, pages 365–374, 2010.

[93] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of
social and technical factors for evaluating contribution in github.
In Proceedings of the 36th International Conference on Software Engi-
neering, pages 356–366. ACM, 2014.

[94] Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s talk about
it: evaluating contributions through discussion in github. In

Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 144–154. ACM, 2014.

[95] Bogdan Vasilescu, Kelly Blincoe, Qi Xuan, Casey Casalnuovo,
Daniela Damian, Premkumar Devanbu, and Vladimir Filkov. The
sky is not the limit: multitasking across github projects. In Pro-
ceedings of the 38th International Conference on Software Engineering,
pages 994–1005, 2016.

[96] Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark GJ
van den Brand, Alexander Serebrenik, Premkumar Devanbu, and
Vladimir Filkov. Gender and tenure diversity in github teams. In
Proceedings of the 33rd annual ACM conference on human factors in
computing systems, pages 3789–3798, 2015.

[97] Bogdan Vasilescu, Alexander Serebrenik, Mathieu Goeminne,
and Tom Mens. On the variation and specialisation of workloada
case study of the gnome ecosystem community. Empirical Software
Engineering, 19(4):955–1008, 2014.

[98] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu,
and Vladimir Filkov. Quality and productivity outcomes relating
to continuous integration in github. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pages
805–816. ACM, 2015.

[99] Huaimin Wang, Peichang Shi, and Yiming Zhang. Jointcloud:
A cross-cloud cooperation architecture for integrated internet
service customization. In 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), 2017.

[100] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun.
An approach to detecting duplicate bug reports using natural
language and execution information. In Proceedings of the 30th
International Conference on Software Engineering, pages 461–470.
ACM, 2008.

[101] Peter Weißgerber, Daniel Neu, and Stephan Diehl. Small patches
get in! In Proceedings of the 2008 international working conference on
Mining software repositories, pages 67–76. ACM, 2008.

[102] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher,
Igor S. Wiese, Ivanilton Polato, Ana Paula Chaves, and Marco A.
Gerosa. The power of bots: Characterizing and understanding
bots in oss projects. Proceedings of the ACM on Human-Computer
Interaction, 2(CSCW), November 2018.

[103] Joel West and Scott Gallagher. Challenges of open innovation:
the paradox of firm investment in open-source software. R&d
Management, 36(3):319–331, 2006.

[104] David Gray Widder, Michael Hilton, Christian Kästner, and Bog-
dan Vasilescu. A conceptual replication of continuous integration
pain points in the context of travis ci. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
pages 647–658. ACM, 2019.

[105] Frank Wilcoxon. Individual comparisons by ranking methods.
Biometrics Bulletin, 1(6):80–83, 1945.

[106] Yue Yu, Zhixing Li, Gang Yin, Tao Wang, and Huaimin Wang. A
dataset of duplicate pull-requests in github. In Proceedings of the
15th International Conference on Mining Software Repositories, pages
22–25. ACM, 2018.

[107] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. Reviewer
recommendation for pull-requests in github: What can we learn
from code review and bug assignment? Information and Software
Technology, 74:204–218, 2016.

[108] Yue Yu, Gang Yin, Tao Wang, Cheng Yang, and Huaimin Wang.
Determinants of pull-based development in the context of contin-
uous integration. Science China Information Sciences, 59(8):080104,
2016.

[109] Wei Emma Zhang, Quan Z Sheng, Jey Han Lau, and Ermyas
Abebe. Detecting duplicate posts in programming qa communi-
ties via latent semantics and association rules. In Proceedings of the
26th International Conference on World Wide Web, pages 1221–1229.
International World Wide Web Conferences Steering Committee,
2017.

[110] Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir
Filkov. One size does not fit all: an empirical study of con-
tainerized continuous deployment workflows. In Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, pages 295–306. ACM, 2018.

[111] Yun Zhang, David Lo, Xin Xia, and Jian-Ling Sun. Multi-
factor duplicate question detection in stack overflow. Journal of
Computer Science and Technology, 30(5):981–997, 2015.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

28

[112] Minghui Zhou and Audris Mockus. What make long term
contributors: Willingness and opportunity in oss community. In
Proceedings of the 34th International Conference on Software Engineer-
ing, pages 518–528. IEEE Press, 2012.

[113] Shurui Zhou, Stefan Stanciulescu, Olaf Lebenich, Yingfei Xiong,
Andrzej Wasowski, and Christian Kastner. Identifying features in
forks. In Proceedings of the 39th International Conference on Software
Engineering, pages 105–116, 2018.

[114] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. What the
fork: A study of inefficient and efficient forking practices in social
coding. In Proceedings of the 2019 27th ACM SIGSOFT International
Symposium on Foundations of Software Engineering. ACM, 2019.

[115] Jiaxin Zhu, Minghui Zhou, and Audris Mockus. Effectiveness
of code contribution: From patch-based to pull-request-based
tools. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 871–882.
ACM, 2016.

[116] Weiqin Zou, Jifeng Xuan, Xiaoyuan Xie, Zhenyu Chen, and
Baowen Xu. How does code style inconsistency affect pull
request integration? an exploratory study on 117 github projects.
Empirical Software Engineering, 24(6):3871–3903, 2019.

Zhixing Li is a PH.D. candidate in Software En-
gineering at National University of Defense Tech-
nology (NUDT). He received his Master degree
in compute science from NUDT and his Bachelor
degree from Chongqing University. His research
goals are centered around the idea of mak-
ing the open source collaboration more efficient
and effective by investigating the challenges
faced by open source communities and design-
ing smarter collaboration mechanisms and tools.

Yue Yu is an assistance professor in the College
of Computer at National University of Defense
Technology (NUDT). He received his PH.D. de-
gree in Computer Science from NUDT in 2016.
He has won Outstanding Ph.D. Thesis Award
from Hunan Province. His research findings
have been published on FSE, MSR, IST, ICSME,
ICDM and ESEM. His current research interests
include software engineering, data mining and
computer-supported cooperative work.

Minghui Zhou received the BS, MS, and PhD
degrees in computer science from National Uni-
versity of Defense Technology in 1995, 1999,
and 2002, respectively. She is a professor in
Department of Computer Science, Peking Uni-
versity. She is interested in software digital
sociology, i.e., understanding the relationships
among people, project culture, and software
product through mining the repositories of soft-
ware projects. She is a member of the ACM.

Tao Wang is an assistant professor in the Col-
lege of Computer at National University of De-
fense Technology (NUDT). He received his Ph.D.
degree in Computer Science from NUDT in
2015. His work interests include open source
software engineering, machine learning, data
mining, and knowledge discovering in open
source software.

Gang Yin is an associate professor in the Col-
lege of Computer at National University of De-
fense Technology (NUDT). He received his Ph.D.
degree in Computer Science from NUDT in
2006. He has worked in several grand research
projects including National 973, 863 projects. He
has published more than 60 research papers in
international conferences and journals. His cur-
rent research interests include distributed com-
puting, information security, software engineer-
ing, and machine learning.

Long Lan Long Lan received the Ph.D. degree
in computer science from National University of
Defense Technology (NUDT) in 2017. He was
a Visiting Ph.D. Student with the University of
Technology, Sydney, from 2015 to 2017. He is
currently a Lecturer with the College of Com-
puter, NUDT. His research interests focus on the
theory and application of artificial intelligence.

Huaimin Wang received his PH.D. in Computer
Science from National University of Defense
Technology (NUDT) in 1992. He is now a pro-
fessor and vice-president for academic affairs
of NUDT. He has been awarded the “Chang
Jiang Scholars Program” professor and the Dis-
tinct Young Scholar, etc. He has published more
than 100 research papers in peer-reviewed in-
ternational conferences and journals. His current
research interests include middleware, software
agent, and trustworthy computing.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2020.3018726

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

