
Zhi-Xing Li, Yue Yu, Tao Wang et al. Detecting Duplicate Contributions in Pull-based Model Combining Textual and

Change Similarities. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 33(1): 1–21 January 2018. DOI

10.1007/s11390-015-0000-0

Detecting Duplicate Contributions in Pull-based Model Combining
Textual and Change Similarities

Zhi-Xing Li1, Yue Yu1∗, Member, CCF, ACM, Tao Wang1, Member, CCF, ACM, Gang Yin1, Member, CCF,
ACM, Xin-jun Mao2, Member, CCF, ACM, and Huai-Min Wang1, Fellow, CCF, ACM

1Key Laboratory of Parallel and Distributed Computing, College of Computer, National University of Defense Technology,
Changsha 410073, China
2Laboratory of Software Engineering for Complex Systems, College of Computer, National University of Defense
Technology, Changsha 410073, China

E-mail: {lizhixing15, yuyue, taowang2005, yingang, xjmao, hmwang}@nudt.edu.cn
Received *****; revised *****.

Abstract Communication and coordination between open source software (OSS) developers who do not work physically

in the same location have always been the challenging issues. The pull-based development model, as the state-of-the-art

collaborative development mechanism, provides high openness and transparency to improve the visibility of contributors’

work. However, duplicate contributions may still be submitted by more than one contributor to solve the same problem

due to the parallel and uncoordinated nature of this model. If not detected in time, duplicate pull-requests can cause

contributors and reviewers to waste time and energy on redundant work. In this paper, we propose an approach combining

textual and change similarities to automatically detect duplicate contributions in pull-based model at submission time.

For a new-arriving contribution, we first compute textual similarity and change similarity between it and other existing

contributions. And then our method returns a list of candidate duplicate contributions that are most similar with the new

contribution in terms of the combined textual and change similarity. The evaluation shows that 83.4% of the duplicates

can be found in average when we use the combined textual and change similarity compared with 54.8% using only textual

similarity and 78.2% using only change similarity.

Keywords pull-request; duplicate detection; textual similarity; change similarity

1 Introduction

The rapid development and evolution of OSS ben-

efits a lot from global volunteer contributions. Even

though OSS communities have fostered plenty of high-

quality projects like Linux ∗ and Rails †, the commu-

nication and coordination between contributors have

always been the challenging issues [1, 2]. To make it

more efficient for geographically distributed software

development, researchers and practitioners have never

stopped exploring better solutions [3, 4]. Nowadays,

the pull-based development model [5], as the state-of-

the-art collaborative development mechanism proposed

by GitHub, is becoming more attractive and being ap-

plied by an increasing number of OSS projects [6]. Sup-

ported by social coding sites and code version control

systems, this model allows developers to fork a repos-

Regular Paper

This work was supported by National Grand Research and Development Plan under Grant No. 2018YFB1004202 and National
Natural Science Foundation of China under Grant No. 61702534.

∗Corresponding Author

©2018 Springer Science + Business Media, LLC & Science Press, China
∗https://www.linux.org. Accessed: 2019-11-1.
†https://rubyonrails.org. Accessed: 2019-11-1.

2 J. Comput. Sci. & Technol., January 2018, Vol., No.

itory for local changes, and submit pull-requests (PR)

for community discussion before merging back.

Although the openness and transparency of the pull-

based model enables developers to collaborate in a more

visible and efficient way, developers’ participation in

OSS is still voluntary and spontaneous [7, 8]. There-

fore, it is inevitable that two developers might work on

the same issue and submit duplicate PRs [9]. Especially

for the popular projects which attract thousands of vol-

unteers and continuously receive incoming PRs [10, 11],

it is hard to appropriately coordinate contributors’ ac-

tivities, because most of them work distributively and

tend to lack the information of others’ work progress.

It cannot be denied that duplicate pull-requests might

bring some benefits. For example, reviewers receive

more than one solution targeted to the same issue and

therefore have higher chance to pick a better solution

after making a comparison between them. Besides, the

authors of duplicate PRs might also learn how the same

issue is solved differently and analyze the strengths and

weaknesses of the two solutions respectively. Neverthe-

less, it is also important to realize the negative impacts

of duplicate PRs.

The prior studies [5, 12] have found that duplicate

is one of the main reasons rejecting a PR. However, for

now, there is no automatic detection tool for duplicate

PRs in GitHub. The current practice is to count on the

manual identification by reviewers. Unfortunately, the

number of new PRs and active PRs may be too large to

cope with for reviewers of popular projects. As a result,

quite a number of duplicate PRs cannot be identified in

time [13] and reviewers have to spent redundant effort

on evaluating each of them separately [5, 14]. Specifi-

cally, we have found in our prior work [13] that 21% of

duplicates are detected after more than one week and

2.5 reviewers are involved in the redundant review dis-

cussion which contains 5.2 review comments on average.

Moreover, a pull-request is iteratively reviewed and up-

dated until it reaches the standard to be merged back

to the codebase of the project [10, 15, 16]. That means

both of the two developers might take redundant effort

to update their PRs before the duplicate relation be-

tween their PRs is identified. Therefore, the more late

the duplicate relation is identified, the more redundant

effort of the contributors and reviewers may be wasted.

These problems highlight the need for an automatic

tool which can be used to detect duplicate PRs at sub-

mission time. The timely identification of the dupli-

cate relation between two PRs would help reviewers

and contributors to be more informed, so that they can

make more appropriate decisions to avoid unnecessary

redundant work. Our previous work [17] has tried to

detect duplicate PRs based on textual similarity. How-

ever, it is possible that different developers use different

expressions to describe the same concept, especially in

OSS development which usually involves global devel-

opers with various backgrounds. To better reveal the

duplicate relation between two PRs, we also leverage

the change information of PRs in this paper. When a

new PR is submitted to a project, we first compute the

textual similarity and the change similarity between it

and the historical PRs. And then we combine the two

kinds of similarities by weights determined by a greedy

search algorithm. Finally, we suggest a list of candidate

PRs that have the highest combined similarity with the

new PR. Based on the dataset constructed in our prior

work [13] which contains more than 2,300 pairs of dupli-

cate PRs, we evaluate our approach in terms of recall-

rate. The experiment results show that about 83.4% of

the duplicates can be found when the candidate list is

set to 20.

The rest of paper is organized as follows. Section 2

illustrates the background. Section 3 presents the ap-

proach of our study in detail, and Section 4 elaborates

Zhi-Xing Li et al.: Detecting Duplicate Pull-requests 3

the conducted experiments and reports the evaluation

result. Threats and related work can be found in Sec-

tion 5 and Section 6 respectively. Finally, we draw our

conclusion in Section 7.

2 Background

In GitHub, a growing number of developers con-

tribute to the open source projects by submitting

PRs [5, 6]. As illustrated in Fig. 1, a typical contribu-

tion process based on the pull-based development model

in GitHub involves the following actions.

• Fork: Before contributing, a contributor (e.g., Al-

ice or Bob) should first fork the original project

and get his or her own local repository.

• Edit: Based on the cloned local repository, the

contributor is able to edit locally (e.g., fixing bugs

or proposing new features) without disturbing the

main branch in the original repository.

• Submit: When the contributor has finished the

desired work, s/he packages the changed codes in

the local repository and submits a PR to the orig-

inal repository. In addition to commits, the con-

tributor needs to provide a title and description

to elaborate the submitted PR.

• Review: To guarantee the submitted PR does not

break the current runnable state of the project,

the core members of the project and community

users will launch the process of code review to de-

tect potential defects and discuss how to improve

its quality. After receiving the feedback from re-

viewers, the contributor gets a chance to update

the PR and attach new commits, which would

trigger another round of code review.

• Decide: Finally, the PR which has went through

several rounds of rigorous evaluations will be

merged or rejected depending on its eventual

quality by an integrator of the original repository.

The pull-based model lowers the contribution en-

try for community developers and improves the trans-

parency and efficiency of collaborative development.

Therefore, an increasing number of projects are adopt-

ing this development model and OSS developers have

expressed high contribution enthusiasm. However, a

potential risk of submitting duplicate PRs exists in the

pull-based development model when more than one de-

veloper is contributing voluntarily without appropriate

coordination. For example, as shown in Fig. 1 two

developers (i.e., Bob and Alice) fork the same origi-

nal repository and edit their own local repositories to

achieve the same goal. Alice first forks the original

repository at time T1 after which Bob also forks the

repository at T2. After forking, they conduct offline

work based on their own local repositories. Unfortu-

nately, both of them lack awareness of the other’s work

and do not realize they are actually doing the same

thing. Consequently, both Alice and Bob submit PRs

at T3 and T4 respectively, which results in two dupli-

cate PRs. After submission, the duplicate PRs will go

through separate threads of code review until they get

decisions at T5 and T6 respectively.

Fig. 2 shows a pair of duplicate PRs (Rails #3066

and Rails #3591) which have been submitted to resolve

the problem of .gitignore file. As shown in the figure,

the reviewer team of a project consists of not only the

core members of the project but also the community

audience who are interested in the project. Moreover,

there is no constrained appointment between reviewers

and PRs and reviewers are free to participate in any

review thread as they want. Consequently, not every

PR will be reviewed by the same reviewer(s), which re-

sults in that duplicate PRs are not always possible to

4 J. Comput. Sci. & Technol., January 2018, Vol., No.

ReviewSubmitEdit

merge

SubmitEdit

Fork

Fork

Review

merge

commit pull-request discussion GitHub user

Original
repository

Local
repository

Local
repository

reject

Decide

reject

DecideAlice

Bob

T1 T2 T3 T4

Main branch

Time line
T5 T6

Fig.1. Contribution process in pull-based development model.

be detected immediately until a reviewer notices the

existence of both PRs. For example, in the case shown

in Fig. 2, the duplicate relation is identified by the re-

viewer vijaydev after the two PRs have received several

review comments. This means duplicate PRs cause re-

dundant effort of not only the contributors’ initial work

before submission but also the review and update ac-

tivities after submission.

In order to overcome the above challenges, an au-

tomatic tool is necessary to detect duplicate PRs at

submission time. In the Bob and Alice case shown in

Figure 1, such a tool can avoid redundant activities af-

ter T4, for example Bob and Alice can be informed of

each other’s work and coordinated to work together for

a better solution, or reviewers can prefer one PR to the

other one and prevent redundant reviews and improve-

ments on both of them. It is also possible that Bob

submits his PR after Alice’s PR has got a decision, i.e.,

T1 < T2 < T3 < T5 < T4 < T6. Even in this scenario,

however, detecting the duplicate relation between the

two PRs at T4 makes sense to prevent reviewers wast-

ing time on duplicate reviews. Finally, we would like

to point out that other possible scenarios exist in that

case, e.g., (a) Bob submits his PR before Alice although

he forks the repository later than Alice does, i.e., T4 <

T3, and (b) Bob forks the repository and submits his

PR after Alice submits her PR, i.e., T3<T2. No matter

which scenario happens, we are always trying to detect

the relation between two actual duplicate PRs at the

submission time of the PR that is submitted later.

3 Approach

The goal of our work is automatically detecting du-

plicate PRs at submission time. As shown in Fig. 3, for

a new PR, we first measure the similarities between it

and the historical PRs.

Actually, we make two intuitive hypotheses: a) if

two pull-requests are duplicate, they tend to have simi-

lar textual descriptions, and b) if two pull-requests are

duplicate, they tend to have high overlap in changes.

Zhi-Xing Li et al.: Detecting Duplicate Pull-requests 5

Title

Description

Review comments

The duplicate relation is identified

(a)

Title

Description

Review comments

(b)

Fig.2. A pair of duplicate PRs of Rails in GitHub. (a) github.com/rails/rails/pull/3066. (b) github.com/rails/rails/pull/3591.

Therefore, two kinds of similarities are considered in

our approach: textual similarity and change similar-

ity. Textual similarity is calculated based on the natu-

ral language text (i.e., titles and descriptions of PRs),

while change similarity is calculated by comparing the

overlap of changed source files. And then, we combine

different similarities with a greedy search algorithm. Fi-

nally, we suggest a list of candidate PRs ranked by the

combined similarity.

In the following subsections, we will elaborate each

step of the approach in detail.

3.1 Calculating Textual Similarity

From the example in Fig. 2, we can see that the titles

and descriptions of the two duplicate PRs share some

same words which means natural language processing

(NLP) technologies can be used to measure their tex-

tual similarity [18, 19, 20, 21]. The text content of a

PR contains two components: the title and the descrip-

tion. Therefore, we calculate both title similarity and

description similarity between two PRs. In the calcu-

lation of each of them, we adopt the standard NLP

techniques [18] as follows.

Preprocessing. Firstly, preprocessing is per-

formed on the texts including tokenization, stemming

and stop words removal. Different strategies can be ap-

plied to split a sentence into tokens depending on the

type of data and application domain [18]. There are

some types of texts which are usually split into multi-

ple tokens in common settings but we treat them as a

single token in the context of PR. For example, code

paths and hyper-links usually indicate one concept and

they should not be divided into separate words. To this

end, we use the regular tokenizer to parse the raw text.

After tokenization, each word will be stemmed to its

root form (e.g., “was” to “be” and “errors” to “error”)

with the help of Porter stemming algorithm [22]. Fi-

nally, common stop words (e.g., “the” and “a”), which

6 J. Comput. Sci. & Technol., January 2018, Vol., No.

Description
Similarity

Code-change
Similarity

Combining
Similarities

Candidate
Duplicates

New
Pull-request

Historical
Pull-requests

Title
Similarity

Calculating
Textual Similarity

Calculating
Change Similarity

File-change
Similarity

Fig.3. Overall framework of our method.

appear so frequently that they have little effect on dis-

tinguishing different documents, will be removed.

Transformation. We then transform the prepro-

cessed texts into multi-dimensional vector which is com-

putable in Vector Space Model (VSM). After transfor-

mation, a text is represented as a vector, for exam-

ple the presentation of the i -th text is: TextV eci =

(wi,1, wi,2, ..., wi,v). Each dimension of the vector cor-

responds to an unique word in the corpus formed from

all the texts. The value of wi,k, which is the weight of

the k -th item of TextV eci, is computed by the TF-IDF

(Term Frequency-Inverse Document Frequency) model:

wi,k = tfi,k × idfk (1)

In the above formula, tfi,k denotes the term fre-

quency which is the frequency of the k -th term appear-

ing in the i -th text and idfi,k denotes the inverse term

frequency which measures the distinguishing character-

istic of a term based on the number of texts containing

it.

Calculation. With the texts represented as vec-

tors, we calculate the similarity between two texts (e.g.,

the i -th text and the j -th text) using Cosine [23] sim-

ilarity which is computed by the following formula:

TextSim(i, j) =
TextV eci · TextV ecj
|TextV eci||TextV ecj |

=

∑m=v
m=1(wi,m × wj,m)√∑m=v

m=1 w
2
i,m

√∑m=v
m=1 w

2
j,m

(2)

For two PRs, after applying this formula to the texts

of titles and texts of descriptions respectively, we can

obtain two similarities Sim title (title similarity) and

Sim desc (description similarity).

3.2 Calculating Change Similarity

It is possible that different sentences and expres-

sion formations can be used by different people when

they try to describe the same thing, especially in the

scenario of collaborative software development which

involves developers with various backgrounds from all

over world. Consequently, using only natural language

text may be not enough to detect whether two PRs are

duplicate. In such cases, the information of changes

may be more helpful. It is intuitive that in order to

carry out the same task, either fixing a bug or adding a

feature, developers are likely to edit the similar or even

the same files. Therefore, in addition to textual similar-

ity, we also take into consideration of change similarity

which includes file-change similarity and code-change

Zhi-Xing Li et al.: Detecting Duplicate Pull-requests 7

Algorithm 1 Calculating the file-change similarity between two PRs

Input:
filesi: the files changed by PRi,
filesj : the files changed by PRj .

Output:
the file-change similarity between PRi and PRj

1: let file sims be a list
2: for fi in filesi do
3: for fj in filesj do
4: fp sim ⇐ file path similarity between fi and fj
5: add tuple (fi, fj , fp sim) to file sims
6: end for
7: end for
8: sort file sims in terms of file path similarity
9: let final sims be a list

10: top num⇐ min(len(filesi), len(filesj))
11: while top num > 0 do
12: let top sim be the item in files sims which gets the highest similarity
13: add top sim[2] to final sim
14: delete item from files sims on condition that item[0] == top sim[0] or item[1] == top sim[1]
15: top num−−
16: end while
17: return sum(final sims)/max(len(filesi), len(filesj))

similarity.

3.2.1 File-change similarity

To calculate the file-change similarity between two

PRs: PRi and PRj , we first parse the raw change in-

formation and extract the changed files. And then Al-

gorithm 1 is applied on the extracted files, which takes

the sets of changed files as the input and outputs the

file-change similarity between two PRs. The first line

initializes a list file sims to store the intermediate re-

sults generated in the process. The subsequent 6 lines

(lines 2∼7) calculate the pair-wise path similarities be-

tween two file sets and store each pair of files and their

similarity to file sims. Specifically, the path similarity

between two files is computed by Algorithm 2 which

will be introduced in the following paragraph. And

then we sort the items in file sims according to the

path similarity (line 8). Subsequently, a new empty

list is created (line 9) and the minimum size of the

two file sets is used to determine how many items in

the sorted file sims would be used to calculate the fi-

nal change similarity (line 10). In the following lines

(lines 11∼16), we iteratively review file sims and se-

lect the item which has the highest similarity and store

the value of similarity to final sims. Let us assume

the selected item is (fm, fn, sim mn). In order to make

the most of each changed file of the two PRs, the other

items in file sims which contain fm or fn are deleted

from file sims and would not be considered in the next

iteration, and so that the left items composed by other

files will have more chance to be reviewed. Finally, all

the similarity values in file sims would be added to-

gether, divided by the maximum size of the two file sets,

and returned as the file-change similarity (line 17).

Algorithm 2 is used to compute the path similar-

ity between two files. It first gets the paths of the in-

puted two files (line 1). And then, it will split the two

paths by path separator (i.e., “/”) (lines 2∼3). Subse-

quently, the longest common sub-path will be found for

the two paths (lines 4∼10). Finally, the length of the

8 J. Comput. Sci. & Technol., January 2018, Vol., No.

Algorithm 2 Calculating path similarity between two files.

Input:
file filei and file filej

Output:
the path similarity between file filei and file filej

1: fpi, fpj ⇐ filei.path, filej .path
2: psi ⇐ split filei into components
3: psj ⇐ split filej into components
4: pos⇐ 0
5: while pos < len(psi) and pos < len(psj) do
6: if psi[pos]! = psj [pos] then
7: break
8: end if
9: pos++

10: end while
11: return pos/max(len(psi), len(psj))

longest common sub-path will be divided by the maxi-

mum length of the two component sets and returned as

the path similarity (line 11).

3.2.2 Code-change similarity

To calculate the code-change similarity between two

PRs: PRi and PRj , we first extract the added lines

and deleted lines in both of them and then apply the

following formula.

CodeSim(i, j) =
AddSim(i, j) + DelSim(i, j)

max(N(linesi), N(linesi))
(3)

In the formula, function AddSim returns the sim-

ilarity between PRi and PRj in terms of the added

lines, and function DelSim returns their similarity in

terms of the deleted lines. Variables linesi and linesj

represent the sets of changed lines (i.e., added lines plus

deleted lines) by PRi and PRj respectively. Function

N returns the number of items contained in the given

set.

The computation detail of DelSim is as follows:

DelSim(i, j) =
N(del linesi & del linesj)

N(del linesi | del linesj)
(4)

del linesi and del linesj are the sets of deleted lines

by PRi and PRj respectively. We use the size of the

union of the two sets divides the size of their intersec-

tion and get the similarity value in terms of deleted

lines.

To compute the similarity in terms of added lines,

we use the token-based method as shown in Algo-

rithm 3. The basic idea of this algorithm is similar

to Algorithm 1. For two given pull-requests PRi and

PRj , we first get the common files filescommon changed

by both of them (line 1). And then we iteratively com-

pute the code-change similarity on each of the common

files (lines 3∼23). Specifically, we extract all the added

lines on a common file by the two pull-requests respec-

tively (line 4), calculate the pair-wise similarities be-

tween two lines and store the results in a list linesims

(lines 6∼12). To compute the similarity between two

lines, function tokenize first replaces each punctuation

in the given line with whitespaces and split the line into

word tokens (line 8). Next, the similarity based on the

two token sets is computed using the size of their union

to divide the size of the intersection (line 9). The sub-

sequent steps on linesims (lines 13∼21) are similar to

the steps (lines 8∼16) introduced in algorithm 1. After

the code-change similarity on each file has been calcu-

lated and collected (line 22), we return the sum of these

similarity value (line 24).

Zhi-Xing Li et al.: Detecting Duplicate Pull-requests 9

Algorithm 3 Calculating the code-change similarity between two PRs in terms of added lines

Input:
filesi: the files changed by PRi,
filesj : the files changed by PRj .

Output:
the code-change similarity between PRi and PRj in terms of added lines

1: filescommon ⇐ the intersection of filesi and filesj
2: let add sims be a list
3: for f in filescommon do
4: add linesi,f , add linesj,f ⇐ addedLines(PRi, f), addedLines(PRj , f)
5: let line sims be a list
6: for linei in add linesi,f do
7: for linej in add linesj,f do
8: tokensi, tokensj ⇐ tokenize(linei), tokenize(linej)
9: tmp sim ⇐ len(intersection(tokensi, tokensj)) / len(union(tokensi,tokensj))

10: add (tokensi, tokensj , tmp sim) to line sims
11: end for
12: end for
13: sort line sims by token similarity
14: top n ⇐ min(add linesi,f , add linesj,f)
15: let final sims be a list
16: while top n > 0 do
17: top sim ⇐ line sims[0]
18: add top sim[2] to final sims
19: delete item from line sims on condition that item[0] == top sim[0] or item[1] == top sim[1]
20: top num –
21: end while
22: extend add sims with final sims
23: end for
24: return sum(add sims)

3.3 Combining Similarities

Since title similarity (Sim title), description simi-

larity (Sim desc), file-change similarity (Sim file) and

code-change similarity (Sim code) between two PRs

have been calculated, we are able to compute the com-

bined similarity [19] as follows:

Sim combined = a× Sim title +

b× Sim desc +

c× Sim file+

d× Sim code

(5)

In the above formula, Sim combined denotes the

combined similarity that is composed by the four kinds

of similarities with different weights (i.e., a, b, c, and

d). To automatically determine the value of the four

weight parameters, we use a greedy search algorithm

as shown in Algorithm 4. It takes as the input of the

training set randomly sampled from DupPR a dataset

of historical duplicate PRs which will be introduced in

subsection 4.1, the maximum number of iterations for

searching the best weight parameters, and the value of

unit that weights increase or decrease in each iteration.

Finally, a list of optimized weight parameters will be

returned.

In Algorithm 4, the first three lines (lines 1 ∼ 3)

initialize the four weight parameters, compose a list

with them and get the initial fitness score for the ini-

tial weight list. The fitness score is used to evaluate

the detection performance of duplicate PRs when a set

of weight parameters are used to combine each kind of

10 J. Comput. Sci. & Technol., January 2018, Vol., No.

Algorithm 4 Determining weight parameters.

Input:
DupPRtrain: the training dataset of duplicate PRs,
max iter: maximum number of iterations (default value = 20),
step: the unit of weight change in each iteration (default value = 0.05).

Output:
a list of weight parameters (a,b and c)

1: let a = 1, b = 1 and c = 1
2: wts = [a, b, c]
3: wts.fts = fitness(DupPRtrain, wts)
4: repeat
5: let search history be a list
6: for i in [0, len(wts)] do
7: tmp wts⇐ wts #forward search
8: increase tmp wts[i] by step
9: tmp wts.fts⇐ fitness(DupPRtrain, tmp wts)

10: add tmp wts to serach history
11: tmp wts⇐ wts #backward search
12: decrease tmp wts[i] by step if tmp wts[i] > 0
13: tmp wts.fts⇐ fitness(DupPRtrain, tmp wts)
14: add tmp wts to serach history
15: end for
16: set wtsmax be the tmp wts which gets the max fts in search history
17: if wtsmax.fts > wts.fts then
18: wts.fts⇐ wtsmax.fts
19: wts⇐ wtsmax

20: else
21: break
22: end if
23: max iter −−
24: until max iter > 0
25: return wts

similarity. For a given PR, we expect its duplicate PR

can get higher similarity than others. To this end, the

fitness function is set as the following.

fit(DupPR,wts) =

∑
(pri,prj)∼DupPRtrain

1

rank(pri, SimPRs(prj))

(6)

In the above formula, (PRi, PRj) indicates each

pair of duplicate PRs in DupPRtrain, and PRi is sub-

mitted early than PRj . Function SimPRs returns a

top list of PRs that are most similar to PRj in terms

of the combined similarity, and function rank computes

the position of PRi in the top list.

The subsequent lines (lines 4∼24) iteratively search

better weight parameters until a local optimal result

is found or the limitation of iterations is reached. In

line 5, we first create a list to store the search histories

in each iteration which will be compared to determine

the local optimal solution. In each iteration, we try to

change every weight parameter (lines 6∼15) from two

directions: forward search (lines 7∼10) and backward

search (lines 11∼14). A copy of the current optimal

weight list is first created in both kinds of search at-

tempt (line 7 and line 11). In forward search, the cor-

responding item in weight list is increased by one unit

of weight change (line 8), while in backward search the

item is decreased by one unit (line 12).

Zhi-Xing Li et al.: Detecting Duplicate Pull-requests 11

The changed weight list is then used to calculate

the new fitness score (line 9 and line 13) and the new

weight lists will be stored in the search history (line 10

and line 14). After all the items in weight list have been

inspected forward and backward, wtsmax, which gets

the maximum the fitness score, will be selected from

search history (line 16). If the fitness score of wtsmax

is higher than fitness score of the current optimal weight

list, it will update the current optimal weight list and

the next iteration begins (lines 17∼19) until it reaches

the limitation of the maximum iterations (lines 23∼24).

Otherwise, the procedure has reached a local optimum

and we terminate the iteration process (lines 20∼21).

In the end, the final optimal weight list is returned (line

25).

3.4 Suggesting Candidates

After the combined similarities between the new PR

and the historical PRs have been computed, we rank

the historical PRs according to the combined similar-

ity. Among the ranked PRs, we suggest the top-k items

as candidate duplicates, so that reviewers can examine

whether the new PR duplicates a suggested existing

PR.

4 Experiment and Evaluation

4.1 Dataset

The experiments are conducted on the dataset

DupPR [13] which is collected from 26 open source

projects in GitHub ‡. Each pair of duplicate PRs in

DupPR has been manually verified after an automatic

identification process, which would guarantee the qual-

ity of this dataset. The construction process of DupPR

is shown in Fig. 4

• Random Sampling. For each project, 200 re-

view comments are randomly sampled, which con-

tain at least one reference to another PR.

• Manual Examination. Each sampled com-

ment is manually examined to see if it is used to

point out the duplicate relation among PRs. Such

kind of comments are called indicative comments

which can help to re-construct the duplicate rela-

tions.

• Rules Extraction. All the manually identified

indicative comments are reviewed to extract rules

(regular expressions) which can be applied lately

to automatically judge whether a given comment

is an indicative comment. The following items are

some simplified rules.

– closed by (?:\w+:?){,5} (?:#(\d+))

– (?:#(\d+)):? (?:\w+:?){,5} dup(?:licate)?

The first rule would match comments which con-

tain the keywords closed by followed by several

words and a pull-request reference like “Closed by

lucky number #2000 because it’s a cleaner PR”.

The second rule would match comments that con-

tain a pull-request reference followed by several

words and the keywords dup or duplicate like

“PR #16509 is duplicate of this PR”.

• Automatic identification. If a review com-

ment is automatically identified as an indicative

comment according to the identification rules, the

PR references contained in the comment will be

extracted to form a couple of candidate duplicates

with the PR that the indicative comment belongs

to. In total, 3,580 paris of candidate duplicate

pull-requests are detected.

‡https://github.com/whystar/MSR2018-DupPR/blob/master/project_list.md. Accessed: 2019-11-1.

12 J. Comput. Sci. & Technol., January 2018, Vol., No.

Random
Sampling

Sampled
Comments

Manual
Examination

Indicative
Comments

Rules
Extraction

Identification
Rules

Automatic
Identification

Candidate
Duplicate PRs

Manual
Verifying

Final
Duplicate PRs

Fig.4. Approach to get historical duplicate PRs.

• Manual verification. It is inevitable

that automatic identification may introduce false-

positive errors. To exclude the misidentified du-

plicates, all the candidate duplicate PRs are man-

ually verified. Finally, 2,323 paris of duplicate

pull-requests pass the manual verification.

For each project in DupPR, we randomly select half

of the duplicates as the training set and the remaining

duplicates are used for test set. In the paper, for each

pair duplicate PRs in DupPR, the early submitted one

is called master PR and the late submitted one is called

duplicate PR. Our research goal is trying to detect the

corresponding master PR given a duplicate PR.

4.2 Evaluation Metrics

To evaluate the performance of our method, we ap-

ply the recall-rate@k metric proposed by Runeson et

al. [18] which has been widely applied by other stud-

ies [24, 25] related to duplicate detection. Formula 7

defines how recall-rate@k is calculated.

recall-rate@k =
n detected

n tatol
(7)

In the equation, n detected is the number of dupli-

cate PRs whose corresponding master PRs are detected

in the suggested candidate list, while n total is the to-

tal number of duplicate PRs in the test set. In terms of

recall-rate, detection approaches can be assessed by cal-

culating the percentage of duplicate PRs for which the

master PRs are in the suggested candidate list. More-

over, the k in recall-rate@k varies from 1 to 20 respec-

tively in the experiments.

4.3 Research Questions and Results

In this subsection, we present the experiments with

respect to our three research questions.

RQ1: Is textual similarity or change similarity

more helpful to detect duplicate PRs?

Experimental setup. As previously discussed, a

PR usually contains two kinds of information, i.e., tex-

tual information and change information, Hence, we

firstly want to investigate how the detection perfor-

mance defers when different information is separately

used. To answer this question, we conduct experiments

with five options by using title similarity, description

similarity, text similarity, file-change similarity, and

code-change similarity respectively. Text similarity is

calculated by adding together title similarity and de-

scription similarity. To offer an overall evaluation on

the detection performance of different similarities, we

compute the weighted average recall-rate@k on all the

26 studied projects. Obviously, the larger the k, the

higher the recall-rate@k would be. However, a larger

k would also cause the top list to contain more irrele-

vant items what would make the automatic detection

less applicable in practice. Consequently, we follow the

prior studies [20, 24, 25, 26] and make k range from 1

to 20 in the experiment.

Zhi-Xing Li et al.: Detecting Duplicate Pull-requests 13

Fig.5. Detection performance of each kind of similarity

Evaluation result. Fig. 5 shows the evaluation

result of different similarities. We use Sim title,

Sim desc, Sim text, Sim file, and Sim code as abbre-

viations for the five experiment options, title similarity,

description similarity, text similarity, file-change sim-

ilarity and code-change similarity respectively. From

the result, we can see that change similarities perform

better than textual similarities and code-change simi-

larity is the best no matter how the size of candidate

list changes. For example, when the size of top list is set

to 20, Sim code is able to find about 78.2% duplicates

for each project in average, while Sim file, Sim title,

Sim desc, and Sim text, can only find 61.0%, 45.2%,

40.1% and 54.8% respectively.

Summary. Change similarity performs better than

textual similarity in detecting duplicate PRs.

RQ2: Can combining textual similarity and

change similarity achieve better detection per-

formance?

Experimental setup. Furthermore, we would like

to examine whether combining textual similarity and

change similarity can improve the detection perfor-

mance compared with using each of them separately.

To answer our second research question, we conduct

another experiment using combined textual and change

similarity (Sim combined) to detect duplicate PRs. As

shown in formula 5, all the four kinds of basic simi-

larities (i.e., title similarity, description similarity, file-

change similarity and code-change similarity) are added

by a linear model with weights determined by a greedy

search algorithm. As we do in the experiment of RQ1,

we still use weighted average recall-rate to evaluate the

detection performance.

Evaluation result. The detection performance of

Sim combined is shown in Figure 6. In addition,

to provide a direct and intuitive comparison among

the combined similarity and separate similarities in-

troduced in RQ1, we also present Sim code (code-

change similarity) in the figure, which achieves the

best performance among them. For each k (varying

from 1 to 20) of recall-rate@k, we use a box plot to

present the detection results on all the projects. The

marker in each box represents the weighted average

recall-rate for the corresponding k and all the mark-

ers are connected as a line which outlines the overall

performance as in Figure 5. In Figure 6 we can see

that Sim combined achieves better performance than

Sim code which means Sim combined is also better

than Sim file, Sim title, Sim desc, and Sim text.

For example, Sim combined can find 83.4% duplicates

14 J. Comput. Sci. & Technol., January 2018, Vol., No.

Fig.6. Detection performance of Sim combined and Sim code

when k is set to be 20, which exceeds the results in

RQ1.

Moreover, we conduct Mann-Whitney-Wilcoxon

(MWW) test [27] to explore whether the performance

improvement is significant. Specifically, we divide each

comparison result into four intervals to see how the sig-

nificance changes when the size of candidate list varies.

Table 1 shows the test results and we can see from the

table that all the p.values are less than 0.05, which

means compared with all the textual similarities and

chang similarities, the improvement of the combined

similarity is significant.

Summary. The combined similarity outperforms ei-

ther textual similarity or change similarity and achieves

significant improvement in detection performance.

RQ3: Does the greedy search algorithm achieve

reasonable weight parameters?

Experimental setup. As previously discussed in

subsection 3.3, the combined similarity is derived from

four different similarities with weight parameters (i.e.,

a, b, c, and d) that are determined by the greedy search

method. Weight parameters have significant impact on

the final detection performance, therefore we would like

to explore the actual effect of this algorithm. To the

end, we randomly generate 20 sets of weight param-

eters and test their effect. In addition, we also want

to examine what happens if each kind of similarity is

treated equally, that is each kind of similarity gets the

same weight. Finally, the performance of these 21 sets

of weight parameters is explored together with that de-

termined by the greedy search method.

Evaluation result. Table 2 shows the experiment

result where the 22 different sets of weight parame-

ters are organized as three groups. WT GS indicates

the weight parameters determined by the greedy search

methods, WT EQ indicates the equal weight parame-

ters, and WT RD indicates the randomly generated

weight parameters. Since WT GS is determined for

each specific project, we do not show the exact weight

values for each project, and instead we use hyphens

as the placeholders in the table. From the table we

Zhi-Xing Li et al.: Detecting Duplicate Pull-requests 15

Table 1. Results of Mann-Whitney-Wilcoxon test

p.Value
Group

0 < k ≤ 5 5 < k ≤ 10 10 < k ≤ 15 15 < k ≤ 20

Sim combined vs. Sim title 1.227512e-213 1.951276e-214 6.003839e-214 2.926856e-214

Sim combined vs. Sim desc 8.972839e-214 1.921972e-214 1.91315e-214 1.895662e-214

Sim cmbined vs. Sim text 4.650869e-212 1.387071e-212 1.274065e-213 8.634096e-214

Sim combined vs. Sim file 2.263567e-191 2.182324e-195 3.805687e-200 2.368933e-200

Sim combined vs. Sim code 1.482833e-33 2.722179e-69 7.054996e-79 4.830722e-69

Table 2. Comparison of detect performance for different weights

Group a b c d RR@1 RR@5 RR@10 RR@15 RR@20

WT GS - - - - 0.520 0.735 0.792 0.818 0.834

WT EQ 1.00 1.00 1.00 1.00 0.488 0.710 0.769 0.805 0.826

WT RD

0.89 0.24 0.21 0.62 0.415 0.668 0.737 0.774 0.796

0.80 0.77 0.41 0.47 0.418 0.641 0.724 0.763 0.801

0.90 0.00 0.60 0.06 0.243 0.437 0.531 0.591 0.623

0.47 0.16 0.94 0.41 0.451 0.650 0.715 0.747 0.764

0.75 0.61 0.28 0.19 0.329 0.533 0.610 0.661 0.700

0.77 0.36 0.18 0.64 0.471 0.696 0.757 0.793 0.804

0.34 0.65 0.38 0.57 0.499 0.716 0.781 0.807 0.823

0.24 0.22 0.86 0.39 0.497 0.660 0.722 0.750 0.771

0.12 1.00 0.05 0.11 0.249 0.404 0.461 0.499 0.526

0.35 0.54 0.39 0.52 0.501 0.726 0.785 0.811 0.830

0.64 0.57 0.52 0.17 0.351 0.572 0.658 0.713 0.741

0.83 0.97 0.22 0.58 0.405 0.637 0.711 0.757 0.786

0.89 0.20 0.05 0.30 0.295 0.491 0.580 0.621 0.649

0.65 0.35 0.47 0.66 0.507 0.713 0.780 0.806 0.828

0.12 0.58 0.23 0.05 0.268 0.464 0.554 0.598 0.627

0.21 0.43 0.24 0.47 0.510 0.729 0.786 0.807 0.827

0.07 0.58 0.77 0.73 0.509 0.687 0.758 0.795 0.814

0.46 0.67 0.75 0.51 0.476 0.695 0.753 0.781 0.803

0.50 0.12 0.16 0.05 0.260 0.453 0.525 0.577 0.609

0.73 0.44 0.36 0.88 0.546 0.720 0.783 0.815 0.830

Note: “RR” is the abbreviation of “Recall-Rate”

can see that WT GS achieves better performance than

WT RD and WT EQ. Moreover, the detection per-

formance of WT RD is not stable; it can achieve good

detection result of 83.0% for recall-rate@20, while it can

also result in bad result which is only 52.6%.

Summary. The greedy search algorithm can achieve

reasonable weight parameters to combine each kind of

similarities.

5 Threats to Validity

In this section, we discuss some threats to validity

which may affect the experiment results of our study.

External validity: Our experiments are con-

ducted based on some of the popular open source

projects hosted in GitHub. The projects are developed

by various programming languages and applied in dif-

ferent domains. However, it is unknown whether our

16 J. Comput. Sci. & Technol., January 2018, Vol., No.

method can be generalized to all the projects in GitHub

and open source projects hosted in other platforms.

Internal validity: Firstly, the dataset of histor-

ical duplicate PRs may contain false negative, since

the extraction rules may not match all the indicative

comments. Moreover, some reviewers may just close

the duplicate PRs and do not leave any comment. In

the future, we plan to collect more projects and enrich

the dataset to further validate the effectiveness of our

method.

Secondly, in order to determine the weight param-

eters for the four kinds of similarities, we use a greedy

search algorithm. In our experiment, this algorithm

performs better than treating each kind of similarity

equally or randomly assigning weights to them, but

we cannot ensure that the algorithm has certainly pro-

duced the most optimal result.

6 Related Work

6.1 Duplicate Detection

Researchers have payed plenty of attentions on rec-

ognizing duplicate bug reports. Runeson et al. [18] eval-

uated how NLP techniques support duplicate reports

identification and found about 40% duplicates can be

detected. Wang et al. [19] proposed an approach to

detect duplicate bug reports by comparing the natu-

ral language information and execution information be-

tween the new report and the existing reports. Sun

et al. [24] used discriminative models to detect du-

plicates and their evaluation on three large software

bug repositories showed that their method achieved im-

provements compared with methods using natural lan-

guage. Later, Sun et al. [25] proposed a retrieval func-

tion, which fully utilized the information available in a

bug report, to measure the similarity between two bug

reports. Nguyen et al. [20] modeled each bug report

as a textual document and took advantage of both IR-

based features and topic-based features to learn the sets

of different terms used to describe the same problems.

Thung et al. [28] developed a tool implementing the ap-

proach proposed by Runeson et al. [18] and integrated it

into the existing bug tracking systems. Lazar et al. [21]

made use of a set of new textual features and trained

several binary classification models to improve the de-

tection performance. Moreover, Zhang et al. [26] inves-

tigated to detect duplicate questions in Stack Overflow.

They measured the similarity of two questions by com-

paring observable factors including titles, descriptions,

and tags of the questions and latent factors correspond-

ing to the topic distributions learned from the descrip-

tions of the questions.

6.2 Pull-request

Although research on PRs is in its early stages, sev-

eral studies have been conducted to analyze how PRs

are applied and evaluated. Gousios et al. [5] conducted

a statistical analysis of millions of PRs from GitHub

and analyzed the popularity of PRs, the factors affect-

ing the decision to merge or reject a PR, and the time to

merge a PR. Furthermore, Gousios et al. [9, 14] studied

on the work habits and challenges in pull-based devel-

opment model from integrators’ and contributors’ per-

spectives respectively. Tsay et al. [29] examined how

social and technical information are used to evaluate

PRs. Yu et al. [6] conducted a quantitative study on

PR evaluation in the context of CI. Moreover, Yue et

al. [10] proposed an approach that combines informa-

tion retrieval and social network analysis to recommend

potential reviewers. Veen et al. [30] presented PRiori-

tizer, a prototype PR prioritization tool, to recommend

the top PRs the project owner should focus on.

Zhi-Xing Li et al.: Detecting Duplicate Pull-requests 17

6.3 Code Review

Code review is employed by many software projects

to examine the change made by others in source codes,

find potential defects, and ensure software quality be-

fore they are merged [31, 32]. Traditional code review

proposed by Fagan [33] has been performed since the

1970s, but it did not get universally applied for its cum-

bersome and synchronous characteristics [34]. In recent

years, Modern Code Review (MCR) [35] is adopted

by an increasing number of software companies and

teams. Different from formal code inspections, MCR

is a lightweight mechanism [36, 11] that is less time

consuming and supported by various tools. Several per-

spectives of code review has been widely studied, such

as automation of review task [11, 37, 38, 39], factors

influencing review outcomes [29, 31, 40] and challenges

involved in code review [34, 41]. The impact of code

review on software quality [32, 42] is also investigated

by many studies in terms of code review coverage and

code review participation [43] and code ownership [44].

While the main motivation for code review was believed

to be finding defects to control software quality, recent

research has revealed that defect elimination is not the

sole motivation. Bacchelli et al. [34] reported additional

expectations, including knowledge transfer, increased

team awareness, and creation of alternative solutions

to problems.

7 Conclusions

In this paper, we proposed an approach to automat-

ically detect duplicate PRs in GitHub. Our method

employs textual information and change information to

calculate the similarity between two PRs and returns

a candidate list of historical PRs that are most similar

with the new-arriving PR. We evaluated our approach

on a dataset of historical duplicates collected based on

26 popular projects hosted in GitHub. The evalua-

tion results showed that using the combined textual

and change similarity can achieve the best performance

which finds about 83.4% of the duplicates compared

with 54.8% using only textual similarity and 78.2% us-

ing only change information.

In the future, we plan to explore more features that

can be employed to detect duplicate PRs. In addition,

we would like to investigate what kind of contribution

patterns tend to result in duplicate PRs and we can pro-

pose some strategies to prevent developers submitting

duplicate contributions.

References

[1] Herbsleb J D, Mockus A. An empirical study of

speed and communication in globally distributed

software development. IEEE Transactions on Soft-

ware Engineering, 2003, 29(6):481–494.

[2] Espinosa J, Slaughter S, Kraut R, Herbsleb J.

Team knowledge and coordination in geograph-

ically distributed software development. Jour-

nal of Management Information Systems, 2007,

24(1):135–169.

[3] Storey M A, Singer L, Cleary B, Filho F F, Zagal-

sky A. The (r) evolution of social media in software

engineering. In Proceedings of the 2014 Interna-

tional Conference on Future of Software Engineer-

ing, 2014, pp. 100–116.

[4] Zhu J, Zhou M, Mockus A. Effectiveness of code

contribution: from patch-based to pull-request-

based tools. In Proceedings of the 24th ACM Sig-

soft International Symposium on Foundations of

Software Engineering, 2016, pp. 871–882.

[5] Gousios G, Pinzger M, Deursen A V. An ex-

ploratory study of the pull-based software devel-

18 J. Comput. Sci. & Technol., January 2018, Vol., No.

opment model. In Proceedings of the 36th Interna-

tional Conference on Software Engineering, 2014,

pp. 345–355.

[6] Yu Y, Yin G, Wang T, Yang C, Wang H. Determi-

nants of pull-based development in the context of

continuous integration. Science China Information

Sciences, 2016, 59(8):1–14.

[7] Ye Y, Kishida K. Toward an understanding of the

motivation of open source software developers. In

Proceedings of the 2003 IEEE/ACM International

Conference on Software Engineering, 2003.

[8] Barcomb A, Kaufmann A, Riehle D, Stol K J,

Fitzgerald B. Uncovering the periphery: A

qualitative survey of episodic volunteering in

free/libre and open source software communities.

IEEE Transactions on Software Engineering, 2018,

PP(99):1–1.

[9] Gousios G, Zaidman A, Storey M A, Van Deursen

A. Work practices and challenges in pull-based

development: the integrator’s perspective. In Pro-

ceedings of the 37th International Conference on

Software Engineering, 2015, pp. 358–368.

[10] Yu Y, Wang H, Yin G, Wang T. Reviewer rec-

ommendation for pull-requests in github: What

can we learn from code review and bug assign-

ment? Information and Software Technology,

2016, 74:204–218.

[11] Thongtanunam P, Tantithamthavorn C, Kula R G,

Yoshida N, Iida H, Matsumoto K. Who should re-

view my code? a file location-based code-reviewer

recommendation approach for modern code re-

view. In Proceedings of the 22nd International

Conference on Software Analysis, Evolution, and

Reengineering, 2015, pp. 141–150.

[12] Steinmacher I, Pinto G, Wiese I S, Gerosa M A.

Almost there: A study on quasi-contributors in

open-source software projects. In Proceedings of

the 40th International Conference on Software En-

gineering, 2018, pp. 256–266.

[13] Yu Y, Li Z, Yin G, Wang T, Wang H. A dataset of

duplicate pull-requests in github. In Proceedings of

the 15th International Conference on Mining Soft-

ware Repositories, 2018.

[14] Gousios G, Storey M A, Bacchelli A. Work prac-

tices and challenges in pull-based development:

the contributor’s perspective. In Proceedings of the

38th International Conference on Software Engi-

neering, 2016, pp. 285–296.

[15] Yu Y, Wang H, Yin G, Ling C X. Reviewer recom-

mender of pull-requests in github. In Proceedings

of the 2014 International Conference on Software

Maintenance and Evolution, 2014, pp. 609–612.

[16] Li Z X, Yu Y, Yin G, Wang T, Wang H M. What

are they talking about? analyzing code reviews in

pull-based development model. Journal of Com-

puter Science and Technology, 2017, 32(6):1060–

1075.

[17] Li Z, Yin G, Yu Y, Wang T, Wang H. Detecting

duplicate pull-requests in github. In Proceedings of

the 9th Asia-Pacific Symposium on Internetware,

2017, pp. 20:1–20:6.

[18] Runeson P, Alexandersson M, Nyholm O. Detec-

tion of duplicate defect reports using natural lan-

guage processing. In Proceedings of the 29th In-

ternational Conference on Software Engineering,

2007, pp. 499–510.

[19] Wang X, Zhang L. An approach to detecting dupli-

cate bug reports using natural language and exe-

Zhi-Xing Li et al.: Detecting Duplicate Pull-requests 19

cution information. In Proceedings of the 30th In-

ternational Conference on Software Engineering,

2008, pp. 461–470.

[20] Nguyen A T, Nguyen T T, Nguyen T N, Lo D, Sun

C. Duplicate bug report detection with a combi-

nation of information retrieval and topic model-

ing. In Proceedings of the 27th International Con-

ference on Automated Software Engineering, 2012,

pp. 70–79.

[21] Lazar A, Ritchey S, Sharif B. Improving the accu-

racy of duplicate bug report detection using tex-

tual similarity measures. In Proceedings of the 11th

Working Conference on Mining Software Reposito-

ries, 2014, pp. 308–311.

[22] Porter M F. An algorithm for suffix stripping. Mor-

gan Kaufmann Publishers Inc., 1997.

[23] Kantor P. Foundations of Statistical Natural Lan-

guage Processing. MIT Press, 1999.

[24] Sun C, Lo D, Wang X, Jiang J. A discriminative

model approach for accurate duplicate bug report

retrieval. In Proceedings of the 32nd International

Conference on Software Engineering, 2010, pp. 45–

54.

[25] Sun C, Lo D, Khoo S C, Jiang J. Towards more

accurate retrieval of duplicate bug reports. In Pro-

ceedings of the 26th International Conference on

Automated Software Engineering, 2011, pp. 253–

262.

[26] Zhang Y, Lo D, Xia X, Sun J. Multi-factor

duplicate question detection in stack overflow.

Journa of Computer Science and Technology, 2015,

30(5):981–997.

[27] Mann H B, Whitney D R. On a test of whether

one of two random variables is stochastically larger

than the other. The annals of mathematical statis-

tics, 1947, pp. 50–60.

[28] Thung F, Kochhar P S, Lo D. Dupfinder: inte-

grated tool support for duplicate bug report detec-

tion. In Proceedings of the 29th International Con-

ference on Automated Software Engineering, 2014,

pp. 871–874.

[29] Tsay J, Dabbish L, Herbsleb J. Influence of so-

cial and technical factors for evaluating contribu-

tion in github. In Proceedings of the 36th Interna-

tional Conference on Software Engineering, 2014,

pp. 356–366.

[30] Van Der Veen E, Gousios G, Zaidman A. Auto-

matically prioritizing pull requests. In Proceedings

of the 12th Working Conference on Mining Soft-

ware Repositories, 2015, pp. 357–361.

[31] Baysal O, Kononenko O, Holmes R. Investigat-

ing technical and non-technical factors influencing

modern code review. Empirical Software Engineer-

ing, 2016, 21(3):1–28.

[32] Mcintosh S, Kamei Y, Adams B. An empirical

study of the impact of modern code review prac-

tices on software quality. Empirical Software En-

gineering, 2016, 21(5):1–44.

[33] Fagan M E. Design and code inspections to re-

duce errors in program development. In Pioneers

and Their Contributions to Software Engineering,

pp. 301–334. Springer, 2001.

[34] Bacchelli A, Bird C. Expectations, outcomes, and

challenges of modern code review. In Proceedings

of the 35th International Conference on Software

Engineering, 2013, pp. 712–721.

[35] Rigby P C, Storey M A. Understanding broad-

cast based peer review on open source software

20 J. Comput. Sci. & Technol., January 2018, Vol., No.

projects. In Proceedings of the 33rd International

Conference on Software Engineering, 2011, pp.

541–550.

[36] Thongtanunam P, McIntosh S, Hassan A E, Iida

H. Investigating code review practices in defective

files: an empirical study of the qt system. In Pro-

ceedings of the 12th Working Conference on Min-

ing Software Repositories, 2015, pp. 168–179.

[37] Jiang J, He J H, Chen X Y. Coredevrec: Auto-

matic core member recommendation for contribu-

tion evaluation. Journal of Computer Science and

Technology, 2015, 30(5):998–1016.

[38] Rahman M M, Roy C K, Collins J A. Correct:

code reviewer recommendation in github based on

cross-project and technology experience. In Pro-

ceedings of the 38th International Conference on

Software Engineering Companion, 2016, pp. 222–

231.

[39] De L J, Nior M L, Soares D, Moreira L, Plastino

A, Murta L. Developers assignment for analyzing

pull requests. In Proceedings of the 30th Annual

ACM Symposium on Applied Computing, 2015, pp.

1567–1572.

[40] Baum T, Liskin O, Niklas K, Schneider K. Fac-

tors influencing code review processes in industry.

In Proceedings of the 24th ACM SIGSOFT Inter-

national Symposium on Foundations of Software

Engineering, 2016, pp. 85–96.

[41] Beller M, Bacchelli A, Zaidman A, Juergens E.

Modern code reviews in open-source projects:

which problems do they fix? In Proceedings of

the 11th Working Conference on Mining Software

Repositories, 2014, pp. 202–211.

[42] Morales R, Mcintosh S, Khomh F. Do code re-

view practices impact design quality? a case study

of the qt, vtk, and itk projects. In Proceedings

of the 22nd International Conference on Software

Analysis, Evolution and Reengineering, 2015, pp.

171–180.

[43] Mcintosh S, Kamei Y, Adams B, Hassan A E. The

impact of code review coverage and code review

participation on software quality: a case study of

the qt, vtk, and itk projects. In Proceedings of

the 11th Working Conference on Mining Software

Repositories, 2014, pp. 192–201.

[44] Thongtanunam P, Mcintosh S, Hassan A E, Iida

H. Revisiting code ownership and its relation-

ship with software quality in the scope of modern

code review. In Proceedings of the 38th Interna-

tional Conference on Software Engineering, 2016,

pp. 1039–1050.

Zhixing Li is a Ph.D. candidate in

the College of Computer at National

University of Defense Technology

(NUDT). He received his Master

degree in Computer Science from

NUDT in 2017. His work interests

include software engineering, data

mining, and knowledge discovering in

open source communities.

Yue Yu is an assistant professor in

the College of Computer at NUDT.

He received his Ph.D. degree in

Computer Science from NUDT in

2016. He has visited UC Davis

supported by CSC scholarship. His

research findings have been published

on MSR, FSE, IST, ICSME APSEC

and SEKE. His current research interests include software

engineering, spanning from mining software repositories

and analyzing social coding networks.

Zhi-Xing Li et al.: Detecting Duplicate Pull-requests 21

Tao Wang is an assistant profes-

sor in the College of Computer at

NUDT. He received his Ph.D. degree

in Computer Science from NUDT

in 2015. His work interests include

open source software engineering,

machinelearning, datamining, and

knowledge discovering in open source

software.

Gang Yin is an associate profes-

sor in the College of Computer at

NUDT. He received his Ph.D. degree

in Computer Science from NUDT

in 2006. He has worked in several

grand research projects including

National 973, 863 projects. He has

published more than 60 research pa-

pers in international conferences and

journals. His current research interests include distributed

computing, information security, software engineering, and

machine learning.

Xinjun Mao is a professor in

the College of Computer, NUDT.

He received his Ph.D. degree in

computer science from NUDT in

1998. His research findings have been

published on Transaction On SMC,

ICSE, Journal of Software: Evolution

and Process, IJSEKE, APSEC. His

research interests include software engineering, multi-agent

system, robot system, self-adaptive system, and crowd-

sourcing.

Huaimin Wang received his

Ph.D. in Computer Science from

NUDT in 1992. He is now a professor

and vice-president for academic af-

fairs of NUDT. He has been awarded

the “Chang Jiang Scholars Program”

professor and the Distinct Young

Scholar, etc. He has published

more than 100 research papers in

peer-reviewed international conferences and journals. His

current research interests include middleware, software

agent, and trustworthy computing.

