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ABSTRACT

The Internet-scale open source software (OSS) production
in various communities are generating abundant reusable
resources for software developers. However, how to retrieve
and reuse the desired and mature software from huge amounts
of candidates is a great challenge: there are usually big gaps
between the user application contexts (that often used as
queries) and the OSS key words (that often used to match
the queries). In this paper, we define the scenario-based
query problem for OSS retrieval, and then we propose a
novel approach to reformulate the raw query by leveraging
the crowd wisdom from millions of developers to improve the
retrieval results. We build a software-specific domain lexical
database based on the knowledge in open source communi-
ties, by which we can expand and optimize the input queries.
The experiment results show that, our approach can refor-
mulate the initial query effectively and outperforms other
existing search engines significantly at finding mature soft-
ware.

CCS Concepts

eSoftware and its engineering — Software libraries
and repositories; eInformation systems — Query re-
formulation;

Keywords

software retrieval; crowd wisdom; query reformulation.

1. INTRODUCTION

Software reuse plays a very important role in improving
software development quality and efficiency. With the quick
development of open source movement, huge amounts of
open source software are published over the internet [25].
For example, there are more than 460 thousand projects
in SourceForge, and more than 30 million repositories in
GitHub, and the number of projects in these communities
are continuous growing dramatically every day. This on the
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one hand provides abundant reusable resources [8, 11], and
on the other hand introduces great challenge for locating
desired ones among so many candidate projects.

To help developers perform such tasks, many projects
hosting sites, like SourceForge (sourceforge.net), and GitHub
(github.com), have provided service for open source software
search and users can launch a query on the base of software
datasets they have indexed. General search engines, like
Google, Bing are alternative choices because of their power-
ful ability for query process.

But, both of them are not fit for the scenarios that users
are aware of only functionality requirement or application
context,especially for the fresher who are lack of develop-
ment experience and programming skills or the experienced
developers who are stepping into a new domain. For ex-
ample, they may search “android database” when actually
meant to persist data for Android app, or “python orm”
when programming with python and turn to some ORM en-
gines to replace SQL statements. We call this kind of query
as Scenario-based Query. Scenario-based queries are usually
short and widely used. Project hosting sites usually match
queries with the text contained in software metadata such as
title, description, etc. But this strategy can’t match user’s
intent perfectly [9]. Results returned by a general search
engine cover a wide range of resource and usually need ad-
ditional clicks and time to filter worthless information [5].

In order to solve the problem of Scenario-based Query, we
introduce a novel method to take advantage of crowd wis-
dom and reformulate the initial query. The approaches to
reformulate a query fall into two types: global methods and
local methods [9, 15]. Global methods work fully automat-
ically to find the query new terms that are related to its
terms and independent of the results returned from it. Lo-
cal methods make use of the documents that initially appear
to match the query and usually rely on user’s feedback or
pseudo feedback to mark the top documents as relevant or
not relevant. The marked documents are then used to ad-
just the initial query. However, relevance feedback has been
little used in web search and most users tend to perform
their search without no more interactions [15, 22].

In this paper, we implement the global approach by using
domain knowledge that is obtained from a lexical database of
software development which we constructed with the crowd
wisdom from millions of developers on StackOverflow (stack-
overflow.com). We firstly crawl all the tags created by users
in a collaborative process in StackOverflow and then build
the domain knowledge with those tags in which way at-
tributes of tag, like count and co-occurrence, play an im-



portant role. Given a query, after standard preprocess, our
method execute synonymy substitution on each term in the
initial query, for example “db” will be transformed into “data-
base”. Next, the query would be expanded using the related
terms obtained from the lexical database. Finally, expanded
queries are refined by a ranking model to search from project
dataset. What’s more, we conducted an empirical evalua-
tion using 14 search scenarios with 35 voluntary developers.
We combine measures Precision at k items and Mean Av-
erage Precision and use MAP@10 to measure the relevance
performance of our method and other search service [15].
We also conduct a user study to assess the usability to help
users find mature software.

In summary, our main contributions in this paper include:

1) We build a software-specific lexical database by lever-
aging crowd wisdom and effectively analyze the domain knowl-
edge in StackOverflow.

2) We reformulate queries with software-specific lexical
database to get user’s real query intension and performs well
in scenario-based queries.

3) Lots of experimental results illustrate that our method
can benefit software development by helping users find ma-
ture software more efficiently.

The rest of paper is organized like this: Section 2 reviews
briefly related work and Section 3 explains related concepts.
Section 4 describes in detail our method through a prototype
design. Section 5 presents our empirical experiment and
evaluation on our method. Section 6 explains some threats
to validity of our method. Finally section 7 conclude this
paper with future work.

2. RELATED WORK

After reviewing a great deal of literature, we found that
most studies in the area of open source software search fo-
cus on code search [12, 19, 20] while few researchers study
on search of software project entities. Tegawende F. Bis-
syande proposed an integrated search engine Orion [3] which
focuses on searching for project entities and provides a uni-
form interface with a declarative query language. They draw
a conclusion that their system can help user find relevant
projects faster and more accurately than traditional search
engine. But they restricted the search language which re-
sults in additional burdens on users when they express their
search intention and the usability goes down. Linstead, et
al. [13] developed Sourcerer which takes advantage not only
of the textual aspect of software, but also of its structural
aspects, as well as any relevant metadata. This system pro-
cesses query on the code level and is not fit for higher level
search, but it inspires us to see software projects form dif-
ferent perspectives

Studies [15, 17] listed several techniques to reformulate a
query which can be classified into two types: global methods
and local methods. Global methods are independent of the
results returned from it. Query expansion via a thesaurus
is a widely used global method in which the thesaurus can
be generated automatically or manually. In this paper, we
use a thesaurus generated automatically. Local methods re-
fine a query according to the documents that are retrieved
in the first round to match the query. Relevance feedback
has been shown to be effective local method to improve rel-
evance of results, but just as Manning stated very few users

used the relevance feedback option on the web [15]. Pseudo
relevance feedback is another local method which treats the
top k ranked items in the result list as relevant and do fol-
lowing work like relevance feedback does. The problem is
that it may result in query drift sometimes. So reformulat-
ing queries via an atomically generated thesaurus is more
practical for software search.

Automatic query reformulation has been a widely used
way to overcome inaccuracy of information retrieval systems
(AQE). Carpineto, et al. [4] presents a unified view of a large
number of approaches to AQE that leverage various data
sources and employ very different principles and techniques.
Gao, et al. [7] presents search logs as a labeled directed
graph and expands queries with path-constrained random
walk in which the probability of determining an expansion
term for a term is computed by a learned combination of
constrained random walks on the graph. Lu, et al. [14]
identifies the part-of-speech of each item in the initial query
firstly and then finds the synonyms of each item from Word-
Net [16]. Like Lu, et al., we also use corpus to expand initial
query, but the difference is that the corpus we use is soft-
ware domain specific that we build on open source software
consumption communities inspired by Yin, et al. [25] who
stated that data from software consumption communities is
very important for the evaluation of open source software.

There are many available approaches to rank software.
OpenBRR [23] makes use of source code, document and
other data in software development process to do this job.
Their method only consider the software itself and ignore
the practical application. SourceForge and OpenHub take
advantage of the popularity of a software to rank it. But the
limitation of their methods is that their results sometimes
have deviation from the actual situation because all user
feedbacks they adopt come from their own platform. Fan,
et al. [6] and Zhang, et al. [28] went further and use user
feedbacks coming from consumption communities to assess
and rank software. We share the same view of them and
think it is more reasonable to make the best of crowd wis-
dom.

3. RELATED CONCEPTS

In this section, we briefly introduce the concept of scenario-
based query and mature software.

3.1 Scenario-based Query

Scenario-based query is a type of queries that are usu-
ally short and generated by users to describe what applica-
tion scenario a software project is about to be applied to or
what functional feature a software project should provide.
There are some concrete instances to explain scenario-based
queries.

1) A developer searches frameworks implement-
ing specific functionality. Suppose that a developer is
required to build a distributed web crawler with Java lan-
guage. To achieve this, he tends to use a message queue to
dispatch the URLs of web page to be crawled, then the query
“java message queue” will be searched. Figure 1 is the top re-
sult of what he got from OpenHub. From the figure, we find
that the most common Java message queue, RabbitMq and
ActiveMQ are not shown in the results. We can see that
current software project hosting platforms hardly
return any popular and common software project



SAFMQ: Store and Forward Message Queue

SAFMQ: Store and Forward Message Queue, message oriented middleware. Uses
include Assured Async Messaging, SOA, Delayed/Batch, and Cluster/Grid
Computing. The SAFMQ server provides cross platform communication among
C++, PHP Java, and .NET clients.

Java MQ Message Testing Tools

A set of |JAVA tools/front-end to publish and read messages on Websphere
MQ.Functionality: Publish a single message, Iteratively publish messages, Publish
messages from files, Read a single messages, Dump a queue to files, Clear a queue

New Java Fast Socket Message Server

A Java Socket Server framework, which provides fast nio socket communication
and thread management, pool management, message gueue ete. it will be easy to
plugged into real project for managing request and response messages.

simple-mq

SimpleMQ is a simple persistent or in-memory message queue written i Java.
Simple to use and config. SimpleMQ can also expose a message queue to clients
on the network. Create a new queue (or get a reference to an already existing
queue): MessageQueue queue =... [More]

Figure 1: Top-4 search result for “java message
queue” returned by OpenHub

relevant to the query.

2) A student looks for development tools. A student
who is only familiar with C++ is asked to write a Python
program for some course requirement. Although the stu-
dent does have programming experience, he is a fresher in
Python. The first thing he wants to do could be to find a
good IDE for Python. So he will fire up browser and search
“Python ide” in Bing or Google and Figure 2 is Top-4 of the
retrieval result returned by Bing. In the search result, there
are some items linking to the home page of relevant software,
but they are mixed with links that are not relevant to any
target software or even though relevant to some but cost-
ing more time to figure out. We find that regular search
engines return search results containing scrambled
information.

Based on the previous analysis, we conclude the challenges
of scenario-based query as follows:

1) Some terms in scenario-based queries are too
general so that it will match so much irrelevant in-
formation. In Figure 2, the retrieval result of “python ide”
shows that several results containing term “python” or “ide”
is not about an IDE for python in fact.

2) Application information or functionality descrip-
tion of some software projects maybe lost in its meta-
data. For example, Figure 3 shows the description of Rab-
bitMQ in OpenHub from which we cannot find any word
about “message queue” that RabbitMQ usually acts as or
about “Java” which belongs to client programing languages
that RabbitMQ supports for. So, it performs badly if a sys-
tem only matches the words typed by user with the text
contained in software metadata.

3.2 Mature software

With the rapid development of open source software, mas-
sive resources provide rich choices for developers, but it also
brings great challenge in searching target software for reuse

b python ide

Web mages Videos Maps

3,690,000 RESULTS Anytime =
IntegratedDevelopmentEnvironments - Python Wiki
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments ~

Mame: Platform: Updated: Notes: Komodo: Windows/Linux/Mac OS X : 2012 - Multi-
language IDE with support for Python 2.x and Python 3. Available as Komodo IDE ...
PyDev - Python - Quick & Easy to Leamn - Welcome to Python Org

What IDE to use for Python? - Stack Overflow
stackoverflow.com/questions/81584
What IDEs {"GUIs/editors”) do others use for Python coding?

Comparison of integrated development environments ...
https://en wikipedia_org/wiki/Python_IDE +

IDE License Windows Linux OS X Other platforms Debugger Assemblers Auto-complete
Macros/templates Latest stable release; SASM: GPL: Yes: Yes: No: Unknown: Yes

ActionScript - Ada - Assembly BASIC C/C++ C#

The Best Python IDEs You Can Use for Development | Python

pythoncentral.io/the-best-python-ides-you-can-usefor-development +
An overview of some of the best Python IDE's for pragramming in Python. We take a look

Figure 2: Top-4 result for “python ide” returned by
Bing

RabbitMQ
8 Settings

Project Summary

RabbitMQ is a complete and highly reliable Enterprise Messaging system.
The RabbitMQ client libraries and broker daemon can be used together to
create an AMQP network, or used individually to bring the benefits of
RabbitMQ to established networks.

Tags

% | mom amqgp messaging middleware erlang broker client

Figure 3: Description of RabbitMQ in OpenHub

from such large amounts of resources. There are many ways
to evaluate a software, such as CapGemini maturity model
[24], OpenBRR model [23] and SQO-OSS model [21], which
make use of source code, document and other data in soft-
ware development process. But we think that the points of
Fan, et al. [6] and Zhang, et al. [28] are more reasonable.
They take advantage of user feedbacks to assess software.
They concluded that feedbacks of a software project in con-
sumption communities provide a more effective evaluation
on it. We share the same view of them, in our approach, we
define the mature software as projects that remain in current
and widespread use and receive extensive discussion.

4. CROWD-WISDOM BASED QUERY RE-
FORMULATION FOR SOFTWARE
SEARCH

In order to solve the two challenges as described in section
3.1. We propose a Crowd-wisdom based software search
method. The overall process of our method is illustrated in
Figure 4.

First of all, we build software-specific lexical database, and
collect software metadata from Internet. And then, given an
initial query, there are three main steps to be done: query
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Figure 4: The overall process of our method

preprocessing and normalization, query expansion and re-
finement and target software retrieve. In the end, a list of
target software that best meet developer’s need will be pro-
duced. In the following subsections, we will explain each
stage of our method in detail.

4.1 Software domain lexical database build-
ing

We construct synonyms and relatedness lexical database
based on data from StackOverflow. We study on Stack-
Overflow dataset because it is a popular Q&A community
focused on computer technology, which is used by more than
a million developers to ask and answer questions related to
computer programming [2]. It contains a great number of
posts and associated tags of high quality. When users want
to issue a question, they are required to specify at least one
tag that is representative of the question or broadly describe
the domain which their question belongs to.

According to StackOverflow, a tag is a keyword or label
that categorizes questions and using the right tags makes it
easier for others to search and answer. These tags are built
by the community which is commonly known as a folkson-
omy. They did a bit of pre-seeding with a few dozen tags
that are very obvious and clear, and most present tags we
see were created by users in a collaborative process. What is
important is that not everyone has the right to create a new
tag if he or she doesn’t reach the threshold of reputations
which increased slowly in StackOverflow. For this reason,
tags in StackOverflow are of high quality and strongly re-
lated to software engineering, which makes themselves the
best choice to build a lexical database of software engineer-
ing. First of all, we crawled all the tags in StackOverflow on
which the following works are based.

4.1.1 Synonyms thesaurus

Developers are usually preferred to use abbreviation to ex-
press some specialized vocabulary, such as “db” for “database”
and “js” for “javascript”. However, this convenience results in
serious problem in query process and usually leads to vocab-
ulary mismatch [18]. To handle such situations, we convert

these abbreviations, like “db” and “js”, to their correspond-
ing master form, that is “database” and “javascript”. So, the
synonyms thesaurus is built to help to do this job. We col-
lect synonyms from StackOverflow rather than Wordnet [16]
since StackOverflow has maintained a community driven tag
synonym system. What’s more, people who are willing to
help improve the tag folksonomy can vote for or suggest new
tags. This truly reflects what synonyms developers use in
their daily development. For now, we have 2461 synonyms
in total.

4.1.2 Relatedness thesaurus

With the API of StackOverflow we can get a one-way re-
latedness relationship between two tags. For each tag, Stack-
Overflow return sixty related tags that most frequently co-
occurred with it. However, this relationship will result in
loss of information when used directly. Tag A is in the list
of related tags of tag B doesn’t means tag B also appears
in A’s. So, we decide to convert this one-way relationship
to a two-way relationship and enrich the dataset. As a re-
sult, every tag is related to the tag that is related to it and
this greatly enriched the relatedness thesaurus. For now, we
have gathered more than 2.9 million relatedness records in
total.

4.2 Open source software repository construc-
tion

As we were saying, there are lots of open source software,
but few of them are of high quality [25, 26, 27, 29]. So we se-
lect those included by Oschina. Oschina founded in August
2008 is the largest open source community in China and has
more than 2.2 million registered members. It provides mul-
tiple channels including news, forum, code sharing, blogs,
and translation, etc. to help local developers study and uti-
lize open source technology. For now, it has included more
than 40,000 software projects that are relatively renowned
and widely used in the word. The way it gather software is
also a presentation of crowd wisdom. They look for valuable
open source software in some sites at home and abroad. In
addition, registered member is able to apply to help it find
potential resource and it will examine whether the suggested
software is worthy of including. Under this rule Oschina
guarantees it can include as much excellent software as pos-
sible.

We designed a web crawler to collect the information of
software project included by Oschina and it is illustrated in
Figure 5. Oschina shows all the included projects in the form
of list, so our crawler has two main steps: crawl list pages
and crawl detail pages with the links in each list page. The
process of the crawler and data flow is ordered by the num-
ber. First of all, model List_Page URL_Generator use prefix
of list page URL and index number to generate all the URLs
of list page and put them into a queue. Then, Downloader
fetches URLs from the queue in turn and downloads the
html of corresponding list page. Next, URL_Extractor ex-
tracts URLs of detail page from the downloaded html files of
list page according to extracting rules which are constructed
manually. The extracted URLs of detail page are also put
into a queue waiting to be fetched by Downloader and the
downloaded html of detail page will be stored to database.
Finally, lots of attributes of OSS, such as name, descrip-
tion, language and license, can be extracted from the final
database. At present, we use the name of OSS for precise
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Figure 5: The process of our crawler for Oschina

retrieval and treat it as the identifier for that software.

The above subsections are about offline work. In following
steps, we pay attention to what is about to happen for a
given query.

4.3 Query reformulation

In this step, we apply some typical text preprocessing on
initial query. Stop words that appear frequently but have
little meaning, such as “for”, “in”, “to”; “on”, etc. will be
removed firstly. Then we will convert all the words to lower-
case and primary form, i.e. “JavaScript” to “javascript”
and “databases” to “database”. Finally, in order to deal
with user’s writing style, we combine neighbor items in ini-
tial query to try more possibility for matching the lexical
database, for example “java message queue” can also be ex-
pressed as “java-message queue”, “java message-queue” and
“java-message-queue”.

After preprocessing, we will normalize items which are
found in database to corresponding master form. The syn-
onym thesaurus is used to achieve this goal, and every syn-
onym is replaced by its master form if it does have such one.
Queries can be donated as ¢ = {t1,t2,ts3,...,tx}, where k
indicates query q has k valid terms after the above process,
and ¢;(1 < ¢ < k), is just one of them. To expand ¢, lexical
database will return a list of its related tags for ¢; together
with their co-occur count. After expansion, every term in
the query, if being a tag on StackOverflow, will be associated
with such a list.

Refinement is the most important step and has a substan-
tial influence on the final quality. In this stage, the term, or
terms, used to be retrieved will be generated. We assume
that terms appearing in each related tag list of query terms
are very likely to be the real intent for the user who typed
that query. We call that terms as mutual term. It is ob-
vious that a query may have more than one mutual term.
So, the problem is how to rank them, that is how to deter-
mine which one is more likely to satisfy the user’s need. To
achieve this, we proposed a ranking model for mutual terms.
Every mutual term is assigned a value under this model and
the value is computed by the following formula:

co — occure(mt, :‘,er?m)2
count(mt) * count(term;)

Ru(mt) =[] (1)

In the above formula, mt indicates a mutual term of some
query and Rv(mt) is its ranking value. Function count(t)
returns the number of questions tagged by tag ¢, and Co —
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Figure 6: The visualization of reformulation for
“java ide”

occure(ti,t2) computes the number of questions tagged by
tag t1 and tag t2. Each multiplier expresses the degree of
relatedness between query term term; and mutual term mdt.
Numerator is the square of the number of questions that
two tags tagged together. Denominator is the product of
the numbers of questions that query item and mutual term
tagging respectively. The degree of relatedness will be 1 if
two terms always tag the same question, and 0 if they tag
totally different questions. The mutual term will be ranked
by Rv and the higher Rv is the more front the term will
rank.

Figure 6 is the visualization of reformulation for “java ide”.
There are two outbound nodes and the left one indicates
“java” and the right one indicates “ide”. The nodes in the
left side of node “java” are terms related to “java” but not
related to “ide”, the nodes in the right side of node “ide”
are terms related to “ide” but not related to “java”, and the
nodes between node “java” and “ide” are items related to
both “java” and “ide”. Except for nodes “java” and “ide”,
the size of node corresponds to its Rv and the bigger its size
is the more likely a node is the target software project.

4.4 Software Retrieval

In the end, the refinement result will be searched in the
software dataset. Software’s name will be checked in the re-
trieve process and if the mutual term is just some software’s
name, this software will be in the final result list. For perfor-
mance purpose, we add a flag to each tag indicating whether
the tag is the name of any software, so it will be easy to filter
the final result list. The final step is to remove fundamental
software which falls into two categories: operating systems
such as “Linuz”, “Android”, etc., and programing language
such as “java”, “php”, “python”, etc. Those software projects
are too fundamental to appear in the search result and it
will be clearer without them.

S. EVALUATION

In this section, we conduct an evaluation of the prototype
implementation of our method.

As discussed in section 4, we conduct our experiment on
the data collected from StackOverflow and Oschina. Based
on our statistics, there are 44,463 tags used to build lexical
database and produce 2,461 synonyms to 1,550 of them and
almost 2.9 million items of relatedness relationship. The
software projects that we have collected is more than 39,000.



Table 1: Dataset of our experiment

Data source | Num. of items Time period

StackOverflow 44,463 Jul. 2008 - Jun. 2016

Oschina 39,148 Aug. 2008 - Jun. 2016

Table 2: Search scenarios

ID Key word 1D Key word

1 Android ide 8 Android orm

2 Java ide 9 Android db

3 Python ide 10 Android rest

4 Java spider 11 Java message queue

5 | Python web spider 12 Java logging

6 Python orm 13 CI

7 Ruby orm 14 | python machine learning

We want to assess two aspects of our method: (1)rel-
evance, whether our method helps the user to find rele-
vant software and, in addition, stands out the search ser-
vice provided by existing project hosting sites (SourForge,
OpenHub, GitHub and Oschina) and general search engines
(Google, Bing and Baidu) and (2) usability, based on the
research [3], we use the usability to measure whether the
relevant software returned by our method are mature and
more likely to satisfy user’s intent.

5.1 Relevance

We collect some typical search scenarios that belong to
scenario-based queries from volunteers and use them to test
our method and other search services. Table 2 shows all
these search scenarios. These scenarios cover several do-
mains of software engineering including development tools,
network development, data persistence, data analyses, etc.

Many measures are available to assess the performance
of search method. One of them is MAP [15] which is a
common measure in ranked retrieval results. For a single
query, Average Precision (AP) is the average of the precision
value obtained for the of top k documents in retrieval results,
and this value is then averaged over queries to get MAP.
MAP is computed by the following formula.

Q] mj
MAP(Q) = Z % Z Precision(Rj) (2)
J=1 " k=1

In the formula, Rjx is the set of items in retrieve results
from the top until meeting the K;; relevant item and m indi-
cates the total number of relevant items for query Q. For a
given query, it is important not just return relevant software
but also rank the relevant software in the top of retrieval re-
sult. In web search, as researches [15, 1] stated, people tend
to be interested in results that are on the first page or, at
most, the first three pages. This leads to another measure
Precision at k items (also known as P@Qk) that measures
precision at fixed number of retrieved results, such as 10 or
20 items. So, we combine AP and P@k and use measure
AP@k which is like AP but at fixed level of retrieval result
rather than recall level. In our case, we adopt the advice
from previous study [15] and set k to 10 which means “m” in
the above formula is 10. That is we will compare the topl0
results returned by each approach. As we have mentioned,
we will test our method in two ways (1) our method vs. soft-
ware project hosting sites and (2) our methods vs. general

Table 3: AP@10 of our method and project hosting
sites

. Search Approach
Query id 5368 08 | SF [ GH
1 0.55 | 0.05 | 0.14 | 0.00 | 0.1
2 0.72 |1 0.34 | 0.36 | 0.01 | 0.1
3 0.55 | 0.41 | 0.57 | 0.40 | 0.4
4 0.37 | 0.05 | 0.41 | 0.53 | 0.74
5 0.53 | 0.00 | 0.59 | 0.01 | 0.79
6 0.41 | 0.76 | 0.68 | 0.33 | 0.42
7 0.30 | 0.63 | 0.23 | 0.00 | 0.19
8 0.33 | 0.87 | 0.34 | 0.03 | 0.45
9 0.14 | 0.00 | 0.05 | 0.00 | 0.10
10 0.35 | 0.10 | 0.26 | 0.01 | 0.60
11 0.70 | 0.33 | 0.05 | 0.01 | 0.01
12 0.30 | 0.47 | 0.19 | 0.00 | 0.23
13 0.77 | 0.23 | 0.27 | 0.02 | 0.44
14 0.79 | 0.00 | 0.19 | 0.12 | 0.05

search engines

5.1.1 Our method vs. software project hosting site

In the compare between our method(OM) and project
hosting sites, GitHub(GH), SourceForge(SF), OpenHub(OP)
and Oschina(OS) are chosen which are the most famous of
them. Table 3 shows the compare result of AP@10 for each
search scenario.

A two-valued judgment system was used and the two val-
ues are “not relevant” and “relevant”. Every item in the
retrieval results has been upon a careful scrutiny to be de-
termined whether it is relevant to the query or not. Soft-
ware projects which have title or description are relevant
to the query but don’t have any code at all are viewed as
“not relevant”. Each row in table 3 shows the APQ@10 of
every method for a search scenario and the cell in which
the number is in bold points out the method that performs
best for this scenario. For query 14+#, that is “python ma-
chine learning”, 8 out of 10 retrieval results of our method
are relevant and the corresponding AP@10 is 0.79, while
other approaches find quite a few relevant software projects
resulting in low performance. In the retrieval of 14 search
scenarios, our method,Oschina, OpenHub, SourceForge, and
Github do the best in six, four, one, none and three of them
respectively.

Take the search scenario “java message queue” as an ex-
ample, table 4 presents the result of each method. From
the result we can see that search service provided by project
hosting sites usually retrieval by matching the textual query
and text contained in project title or description.

This tends to result in superficial match where tex-
tual query is contained, or partly contained, in the
metadata of retrieved project but the relevance be-
tween them is very low. What’s more, most project host-
ing sites don’t even check whether the returned projects are
valid that the code is not empty. All these factors lead to
worse performance for these project hosting sites.

5.1.2  Our methods vs. general search engines
To compare our method and general search engines, we
select Google, Bing and Baidu to do the contrast analysis.
Table 5 shows the compare result of AP@10 for each search



Table 4: Retrieval result for “java message queue”

Search Method | Retrieval result

Our method Activemq, rabbitmq, websphere-mq,
spring, amqp, apache-kafka, apache-
camel, hornet, spring-amqp, zeromq

Oschina SUN Java System Message Queue,
HQueue, Akka, Appserver.io, mJMS,
Open Message Queue, Android pack-
age android-ActionQueue, Jetlang,

NoHttp

OpenHub Java MQ Message Testing Tools,
SAFMQ, New Java Fast Socket
Message Server, simple-mq, metis-
jms, notify4j, myqueue, ProMVC,
Java_Examples, OpenSource .NET &
Java Messaging Service

Qmbhandle, bacnet for java, mxa, we-
blogic mq, Java SMPP Client, jlib-
modbus, gmail api for java, facebook
auto group poster, beecrypt cryptog-
raphy library, activemgbrowser, java
application framework for all

SourceForge

GitHub mongo-queue-java, rmg, amazon-
sqs-java-messaging-lib, softlayer-
message-queue-java, javascript-
message-queue, storage-queue-
java-getting-started, message-
queue, message-queue, burrow-java,

javamessagequeue

scenario. Results returned by general search engines are a
list of web page’s URL, and we treat a URL as relevant if
it links to the official site or hosting site of some relevant
software. What is interesting is that Google and Bing which
are the outstanding search engines in the world worked very
poor. For these general search engines, it’s not their advan-
tage in vertical search for software and they hardly return an
official site of a particular software but many posts related to
users’ query. Maybe user can dig valuable information about
related software after clicking and going through these posts,
but it required more number of click and took more time. It
is a bad idea to force users to filter useful information when
the system can do it for them.

Finally, Figure 7 shows the MAP@10 on all these scenarios
of each approach. In this measure, our method do the best
and Baidu do the worst which hardly return any relevant
software projects.

In average, vertical search service provided by project
hosting sites do better than general search engine while
SourceForge lags behind Google and Bing.

Discussion: In the compare between our method and
project hosting sites, our method fall behind others on some
search scenarios. For “android orm”, the results returned
by our method are shown in the table 6. The software
project relevant to “android orm” is a kind of software that
is ORM engine and can be applied to Android context at
the same time. Obviously, “greenDAQO”, “ORMLite”, “Ac-
tiveAndroid”, “SugarORM” and “dbflow” are target projects,
but “SQLite”, “MySQL” and the others shouldn’t appear in
the retrieval result. They have been returned because of
their co-occurrence with terms “android” and “orm” On this

Table 5: AP@10 of our method and general search
engines

. Search Approach
Query id OM | Google | Bing | Baidu
1 0.55 0.20 0.20 0.12
2 0.72 0.34 0.32 0.03
3 0.55 0.07 0.06 0.03
4 0.37 0.06 0.20 0.03
5 0.53 0.10 0.11 0.00
6 0.41 0.19 0.36 0.00
7 0.30 0.10 0.04 0.00
8 0.33 0.13 0.14 0.00
9 0.14 0.00 0.00 0.00
10 0.35 0.19 0.04 0.00
11 0.70 0.18 0.15 0.00
12 0.30 0.16 0.00 0.00
13 0.77 0.00 0.05 0.00
14 0.79 0.07 0.30 0.00
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Figure 7: MAP®@10 of each approach

point, they really should be in the result list. But their co-
occurrence means differently from the relevant software’s.
The “greentDAQO” co-occurs with “orm” because it is a kind
of ORM, while “SQLite” co-occurs with “orm” because it is
usually used together with an ORM project which results in
drift from original search intention and decreases the rele-
vance performance. We treat this problem as mismatch of
intention. It is a meaningful work to solve this problem for
improving the relevance performance in the future work.
From the tables and figures we can see that for most
search scenarios the AP@10 of our method exceed
other approaches’ and our MAP@10 is the most out-
standing one which means our method is more likely
to find users relevant software projects than others.

5.2 Usability

The above only think of the relevance between query and
retrieval result and the software’s quality is out of consider-
ation. Software of high usage and attention should be in the
front of the retrieval result because people tend to choose
software that has been tested and applied widely. We call



Table 6: ToplO retrieval results for “android orm”
returned by our method

Rank Result Rank Result
1 SQLite 6 MySQL
2 greenDAO 7 design-patterns
3 ORMLite 8 dbflow
4 ActiveAndroid 9 Realm
5 SugarORM 10 Node.js

Table 7: Likert scale response categories for user
evaluation

Scale Response category
5 Most of them are mature
4 Some of them are mature
3 Not sure
2 Few of them is mature
1 All of them are worthless

these software mature software. The ability to return more
mature software rather than no-mature software, which we
called worthless software, is an important quality for search
service. And this ability is just the usability that we are
going to study. In order to do this, we perform a survey on
users’ attitude towards the search results returned by each
approach.

Users are asked to evaluate the relevant items in the search
result of each query returned by every approach. The eval-
uation is a Likert-type scale with more detailed expression
for each choice [10]. The respondents need to choose one of
five candidate response items to claim how they think about
these relevant software in the search result (i.e. our evalu-
ation process is a 5-point Likert scale). Table 7 describes
these five candidates.

To do the evaluation 35 individuals with different back-
grounds were invited to assess the result. Among them, 12
are master students, 8 are PhD students and 15 engineers
with at least 3 years software development experience.

From Figure 8 we can see that, for our method, Q1 (25th
percentile) is 4, median, Q2 (75th percentile), and the max-
imum are all five, and the median is 4.8 which indicates
that our method is more likely to find user a mature soft-
ware with stable performance and does better than other
methods. In the last experiment, general search engines lag
behind project hosting sites in relevance evaluation. But in
usability assessment, general search engines are apparently
better than project hosting sites which means that general
search engines tend to return few relevant but mature soft-
ware while project hosting sites return relatively more rele-
vant software but most of which is worthless.

We test and confirm that the performance of all these
search approaches are significantly different using the sta-
tistical test (p < 0.005,cs = 929.3,df = 6). This indicates
that it is important to prefer an appropriate and re-
liable approach to search for software project.

Discussion: After evaluating each search approach. We
can see that our method gets outstanding performance in
both relevance evaluation and usability evaluation because
our method is crowd-wisdom based which reflects the actual
state of software domain and can better satisfy user infor-
mation need.
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Figure 8: User evaluation on usablity

6. THREATS TO VALIDITY
6.1 Internal validity

Our software domain lexical database is built only on tags
in StackOverflow which are of high quality maintained by
a strict and excellent mechanism. There still exists many
other valuable information that we can extract such as com-
ments, post contents, etc. In the future, we plan to analyze
the contents and comments of posts in StackOverflow and
rich the lexical database.

6.2 External validity

Interfering software is a kind of software that is too funda-
mental to be considered as potential candidate for scenario-
based queries, such as “Windows”, “Ruby” and so on. Al-
though we have filtered out such software from our datasets,
the datasets still contain some interfering software. This
may impact the overall experience.

7. CONCLUSION & FUTURE WORK

This paper proposed a novel method for scenario-based
software search. We build a software-specific domain lexical
database based on the knowledge in open source communi-
ties and then to reformulate the initial query. The evaluation
on an empirical experiment shows that our crowd-wisdom-
based method significantly outperforms other search ser-
vices. Compared with other search services, our method
can find user more mature software projects that are more
likely to be helpful for user’s development.

One of our future work is to apply our method to OSSEAN
[25] which is a search engine for open source software and
strengthen its ability for various type of queries. Anyway,
there are still some problems to be resolved before successful
integration. For example, how to identify different type of
queries and apply corresponding process method.
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