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Abstract Context: Just-in-time defect prediction (JITDP) leverages modern ma-
chine learning models to predict the defect-proneness of commits. Such models
require adequate training data, which is unavailable in projects with short his-
tories. To address this problem, cross-project methods reuse the data or mod-
els in other projects to make predictions, grounded on the assumption that they
share similar defect-related features. However, these features are overlooked, which
leads to unsatisfying model performance. Objective: This study aims to investigate
the relationship between cross-project JITDP performance and project features,
thereby improving the performance of cross-project models. Method: We propose a
Feature-based ENSEmble modeling approach (FENSE) to cross-project JITDP.
For a target project, FENSE pairs it to each source project and obtains 20 features.
Leveraging them, it can predict the transferability of each off-the-shelf JITDP
model. Then FENSE identifies the most transferable ones and combines them
to make cross-project predictions. To achieve this, we conduct a large-scale em-
pirical study of 113,906 project pairs in GitHub and investigate the impact of
project features. Results: The results show that: (1) cross-project transferability is
highly related to features including programming language and the defect ratio of
the source project; (2) our feature-based model selection scheme can improve the
cross-project JITDP performance by 10%; (3) FENSE outperforms other mod-
els on five evaluation measures without extra time and space costs. Conclusions:
Our study suggests that project features can help identify powerful cross-project
JITDP models and improve the performance of ensemble approaches.
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1 Introduction

Software quality assurance is of vital importance in software development and op-
eration. Due to limited testing resources and the popularity of open-source software
(OSS), data-driven approaches are employed to aid traditional quality assurance
activities. One of them is software defect prediction. It identifies defects in software
through software metrics, such as lines of code, McCabe’s cyclomatic complexity,
etc., which has been widely adopted in industry and academia (Ostrand et al.
2005; Menzies et al. 2010; Lewis et al. 2013). However, it is usually exhausting to
locate defects and find the developers who introduced them in large-scale software
projects. Therefore, researchers put forward the concept just-in-time defect pre-
diction (JITDP) (Mockus and Weiss 2000; Kim et al. 2008; Kamei et al. 2013),
which is capable of predicting the risk of every code change right after its submis-
sion. It allows developers to review and fix the potential bugs in an efficient and
resource-saving way, and hence it has received wide attention these years (Mockus
and Weiss 2000; Aversano et al. 2007; Kamei et al. 2013; Yang et al. 2015; Kamei
et al. 2016; Yang et al. 2016; Liu et al. 2017; Huang et al. 2017; Yan et al. 2020;
Kondo et al. 2020; Wang et al. 2020).

However, training machine learning models requires adequate training data,
otherwise they will not obtain satisfying performance. For JITDP tasks, few com-
panies store their historical defect data for past projects. Even if enough data is
provided, human inspection and annotation are still needed (Turhan et al. 2009).
This process can be tedious and time-consuming, which imposes a severe chal-
lenge to JITDP. Inspired by transfer learning (Pan and Yang 2010), cross-project
defect prediction (CPDP) approaches utilize data or models from other projects to
make predictions. Based on reuse granularity, existing techniques can be divided
into data-level and model-level transfer. The former manipulates data in source
projects to build a training set similar to the target (Turhan et al. 2009; Ma et
al. 2012; Nam et al. 2013; Kawata et al. 2015). However, due to limited data in
target projects, data-level transfer suffers from over-fitting and needs retraining
whenever new data arrives. The resulting costs of time and resources make this
type of method not suitable for software with tight iterations. As for building a
giant model by merging all cross-project data, its training cost is also exhausting.
Additionally, in software companies, defect data is protected as a proprietary asset
and thus inaccessible for developers.

Model-level transfer is proposed to alleviate this problem. It selects or com-
bines off-the-shelf models trained on other projects to predict risky commits in the
target project. Model-level transfer is simple and applicable, but its performance
is discouraging. A common solution is to apply ensemble modeling (Fukushima
et al. 2014; Kamei et al. 2016; Catolino et al. 2019; Tabassum et al. 2020). How-
ever, ensemble models behave differently and sometimes even perform worse than
traditional ones. The reason lies in the selection of base learners and ensemble
techniques. In addition, Kamei et al.’s approach (2016) based on project similar-
ity rarely improves the performance, which suggests that the relationship between
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model performance and project similarity is not straightforward. Thus, a thorough
investigation of factors in cross-project performance is required.

Therefore, we propose a feature-based ensemble modeling approach, FENSE,
to perform the cross-project JITDP task in this paper. Given a project set and
a target project, FENSE first pairs the target with each source project on which
a JITDP model has already been trained. Then it obtains 20 features in four
levels as inputs and predicts the transferability of each off-the-shelf JITDP model.
Transferability refers to the estimated performance when a model is applied to
the target. FENSE identifies the most transferable JITDP models and generates
a sequence taking advantage of their features. Finally, the models in sequence are
integrated to predict the risk of commits in the target project.

To investigate the factors in cross-project transferability, we conduct a large-
scale empirical study on OSS projects in GitHub. We first collect the develop-
ment history of 831 projects in GitHub and employ an improved SZZ algorithm
to annotate each commit. After preprocessing, we construct 113,906 transferring
pairs of 338 projects. For each pair, 20 features are extracted. Their impacts on
cross-project JITDP performance are analyzed by regression analysis. Finally, we
validate our approach on a test set with 67 projects and compare it to other
cross-project JITDP methods to prove its effectiveness.

To be specific, we address the following four research questions:

(RQ1) What are the factors in the cross-project transferability of JITDP models?

(RQ2) Is our feature-based model selection scheme effective? How much benefit
can it bring to the cross-project performance of JITDP models?

(RQ3) Can ensemble modeling improve the cross-project performance of a single
JITDP model? What are the effects of different combination methods and
integration scales?

(RQ4) How does FENSE perform compared to other cross-project JITDP mod-
els?

These four RQs test the validity of FENSE in sequential order. In RQ1, we
investigate our proposed features to measure their impacts on cross-project trans-
ferability. The programming language and the defect ratio of the source project
are two influential factors in transferability. Moreover, the conditional R2 of our
regression analysis is 0.844, which shows our features are expressive. In RQ2, we
find out that our feature-based model selection scheme prioritizes highly transfer-
able models to demonstrate its effectiveness. In RQ3, we discuss the effect of each
component in the ensemble modeling of FENSE. Finally, in RQ4, we evaluate the
overall performance of FENSE by comparing it to other five cross-project JITDP
approaches. The results show that FENSE outperforms other models on 5 out of 6
evaluation measures, particularly on recall and effort-aware metrics. Its time and
space costs are also acceptable.

The overall framework of our study is shown in Figure 1 and illustrated in
Section 3.

The contributions of this paper include:

– We collect 8,169,560 commits from 831 projects in GitHub and annotate them
using an improved SZZ algorithm, which composes a large-scale cross-project
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JITDP dataset. Our study proves that model-level transfer actually performs
well when the dataset is large enough.

– We extract 20 project features for each project pair and build a regression
model to investigate their impacts on cross-project transferability, which is
overlooked by previous studies. The programming language and the defect
ratio of the source project are two influential factors in transferability.

– We propose a feature-based ensemble modeling approach, FENSE, to perform
cross-project JITDP tasks. Its model selection scheme leverages the contextual
knowledge of projects to integrate multiple trained models with higher trans-
ferability. The results prove that FENSE can prioritize learners with higher
transferability for different targets and perform best on five of six evaluation
metrics.

– We find that the effect of ensemble modeling is not comparable to the model
selection scheme. Ensemble models can achieve their expected performance
by integrating several models. Moreover, their effort-aware metrics and cost-
effectiveness decrease as the integration scale grows. Thus, merely increasing
integration scale without proper consideration of software features cannot ben-
efit cross-project JITDP.

The rest of this paper is organized as follows: Section 2 discusses the back-
ground and related work of CPDP and JITDP. Section 3 presents our methodology
of seeking factors in cross-project transferability and approaches to building the
cross-project model. Section 4 describes our experimental design, including dataset
construction, model building, evaluation techniques, and comparing methods. Re-
sults are illustrated in Section 5. Section 6 summarizes the threats to validity of
our methods. Finally, Section 7 concludes our work.

2 Related Work

2.1 Just-in-Time Defect Prediction

Just-in-time defect prediction, known as a change-level quality assurance method,
uses change metrics, e.g., the number of modified files, rather than module-level
metrics, e.g., the number of methods used in a given class or module, to predict
the defect-proneness of commits. It is regarded as a resource-saving way to assist
software quality assurance activities in practice.

JITDP can be traced back to Mockus and Weiss’s work (2000). They hold that
changes are the most fundamental and immediate concern in a software project.
Kim et al. (2008) regarded predicting bugs in software changes as a classifica-
tion task and introduced a change-level defect prediction technique. The concept
‘just-in-time quality assurance’ was proposed by Kamei et al. (2013). They con-
ducted an empirical study on six open-source and five commercial projects from
an effort-aware view. Several change measures in five aspects (diffusion, size, pur-
pose, history, and experience) were summarized to predict the risk of changes.
They have been widely applied in recent studies (Yang et al. 2015; Kamei et al.
2016; Yang et al. 2016; Liu et al. 2017; Yang et al. 2017; Huang et al. 2017; Yan
et al. 2020; Kondo et al. 2020).

Novel techniques are constantly being adopted to JITDP by researchers, i.e.,
ensemble learning and deep learning approaches are used to generate features for
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defect prediction. Yang et al. (2017) proposed a two-layer ensemble learning ap-
proach (TLEL) to improve the performance of JITDP. The authors combined the
bagging and stacking strategies to build a two-layer model, which proved effective
and robust. Chen et al. (2018) considered JITDP as a multi-objective optimization
problem and proposed an unsupervised approach, MULTI, to identify more buggy
changes with less effort. Their results suggested that MULTI performs significantly
better than all the state-of-the-art methods. Hoang et al. (2019) proposed an end-
to-end deep learning framework for JITDP. Their model used a convolutional
neural network to extract features from commit messages and code changes, out-
performing state-of-the-art methods. Wang et al. (2020) considered using a deep
belief network to extract the semantics of code to perform defect prediction. They
validated their results on two file-level and two change-level prediction tasks, which
improves current results significantly. Li et al. (2020) proposed a semi-supervised
model named EATT for effort-aware JITDP. It leveraged the idea of tri-training to
exploit more unlabeled defect data. Compared with the state-of-the-art supervised
and unsupervised models, EATT has a considerable advantage over them.

Hoang et al. (2020) proposed a neural model, CC2Vec, to represent the seman-
tics of code changes. They evaluated the results produced by CC2Vec in JITDP
tasks, which outperforms DeepJIT. Several researchers have followed their work
and provided new approaches to JITDP recently. Pornprasit and Tantithamtha-
vorn (2021) pointed out that CC2Vec requires all unlabelled testing data before-
hand and hence does not follow the principles of JITDP. Their replication study
demonstrated that the performance of CC2Vec decreases heavily when exclud-
ing the testing set. To this end, they proposed JITLine, a JITDP approach that
can also identify defective lines. It is more fine-grained and more accurate than
other baseline approaches. Zeng et al. (2021) validated CC2Vec on a large-scale
dataset. Their results showed that a traditional JITDP model that only considers
the added-line-number feature can outperform CC2Vec and be a hundred times
faster.

Previous studies imply that JITDP is a practical way to ensure software quality
with finer granularity and high efficiency. However, these models require a large
training corpus of within-project data to perform better. As for projects with few
historical data, local JITDP methods are often not available. Therefore, this paper
studies JITDP models in a cross-project context.

2.2 Cross-Project Defect Prediction

Cross-project defect prediction is a popular sub-field concerned by researchers.
The lack of training data makes it impossible to build machine learning models.
CPDP approaches are proposed to solve this problem by reusing available data or
models from other projects to make predictions. This idea was first introduced in
Briand et al.’s study (2002), in which they considered reusing the fault-detecting
models across software systems. Their results suggested that the applicability of
cross-project models is far from straightforward because of system differences.

Zimmermann et al. (2009) ran cross-project predictions for 12 real-world appli-
cations and analyzed the effects of 40 software metrics on cross-project predictabil-
ity. Among 622 cross-project cases, they only got 21 satisfying results, suggesting
simple using models from related projects cannot lead to better model perfor-
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mance. As for software metrics, they also wondered how to find the right set of
metrics to make cross-project predictions.

Their dedicated work enlightened us to further study the factors in cross-
project transferability, particularly in a large-scale dataset. With the big data
from OSS projects, we can model the influence of different project features more
accurately through regression analysis.

To improve the cross-project performance, prior studies proposed two types
of CPDP approaches leveraging the idea of transfer learning. One is data-level
transfer. It refers to leveraging data from other projects to build a training set
for targets. Turhan et al. (2009) applied nearest neighbor filtering to cross-project
data and used a similar part for defect prediction in target projects. Kawata et
al. (2015) argued that the predicting performance of CPDP relies on the quality
of subset selection heavily. Hence, they proposed a new relevancy filter based on
DBSCAN, an advanced clustering algorithm. Ma et al. (2012) proposed an algo-
rithm called Transfer Naive Bayes (TNB) to construct a training set by weighing
cross-project data. Nam et al. (2013) found that the difference in feature distri-
butions between two projects led to poor CPDP performance. They employed
Transfer Component Analysis (TCA) and proposed TCA+ to find a latent feature
space where data distributions of source and target projects were similar. These
approaches tried to build a training set similar to the target from data distri-
bution and achieved good results. However, the defect data is often treated as a
proprietary asset, thereby inaccessible for developers. Besides, data-level transfer
suffers from conclusion instability (Krishna et al. 2016), which refers to frequently
retraining as long as new data comes. The resulting costs of time and resources
make this type of method not suitable for software with tight iterations.

Another data-level method called data-merging directly combines all cross-
project data as a training set (Kamei et al. 2016; Tabassum 2020). Different from
the aforementioned similarity-based transfer methods (Turhan et al. 2009; Kawata
et al. 2015), it simply assumes that the generalization ability of a model can be
achieved when defect data is adequate, thereby achieving good results on the tar-
get. Kamei et al. (2016) suggested that such a simple approach can yield models
performing well in a cross-project context. Tabassum et al. (2020) investigated
the effects of cross-project data in realistic online JITDP scenarios through data
merging. They concluded that using cross-project data can benefit JITDP at the
initial phase and even when much within-project data is available. Similar to the
methods above, data-merging also requires a plethora of training data from differ-
ent projects, which is often unavailable. At the same time, it is time-consuming to
train such a large model.

Another type of CPDP approach is model-level transfer. It selects or combines
defect prediction models that have been trained on other projects to predict the
risk of commits in the target project. It is more straightforward and applicable
than data-level transfer and enables us to make predictions without necessary
access to defect data. However, the limitation of model-level transfer is its low
performance. A common solution is to leverage ensemble modeling. Fukushima et
al. (2014) empirically evaluated cross-project JITDP models on 11 OSS projects
and found that the ensemble model has the best performance. Catolino et al. (2019)
conducted an empirical study of 14 mobile applications and 42,543 commits, where
four traditional learners and four ensemble models were evaluated. The results
manifested that Naive-Bayes performs best in these models rather than ensemble
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ones. Tabassum et al. (2020) held that the ensemble approach is detrimental to
the performance in an online scenario.

The results above suggest that researchers have mixed attitudes to the ef-
fectiveness of ensemble models. The reason lies in the selection of base learners
or ensemble techniques. Kamei et al. (2016) considered selecting several models
that shared higher project similarity with the target project and using similarity-
weighted voting for the ensemble model. However, its performance was not sig-
nificantly improved, suggesting that the relationship between model performance
and project similarity is not straightforward. A thorough investigation of factors
in cross-project performance is required.

Apart from the ensemble modeling, Krishna et al. (2016) proposed a single-
model transfer approach called ‘Bellwether’ to simplify the CPDP task. Bellwether
is the model that produces the best result among a project community. Their
results showed that bellwether exists and generates more accurate predictions than
local models. It demonstrated that there are models which can perform well in a
cross-project context, but the statistics cannot predict them. We believe a large-
scale dataset and the consideration of project features can benefit the identification
of good cross-project models.

Therefore, a powerful model selection scheme should be proposed. It should
investigate the factors in model performance among a large scale of projects and
various project features, which is our focus in this paper.

3 Methodology

Our research methodology follows a quantitative approach. The overall frame-
work is shown in Figure 1. In general, three main activities are included in our
research: (1) building a large-scale JITDP dataset from OSS projects in GitHub;
(2) conducting a regression analysis to investigate the impact of project features
on cross-project transferability; (3) building an ensemble model to perform the
cross-project JITDP task. Specifically, we clone hundreds of GitHub repositories
and crawl relative project data, e.g., issues and contributors. We carefully clean
our repositories by several filtration rules. To obtain the label of each historical
commit, we annotate the data with an improved SZZ algorithm. The process of
dataset construction will be explicated in Section 4.1. We extract project features
in four different levels for all projects and train their within-project JITDP mod-
els with labeled data. To figure out the factors in cross-project transferability, we
use a linear mixed-effect model for regression analysis. Unlike existing ensemble
methods, we leverage this contextual knowledge for model selection by prioritizing
top-K trained models with higher transferability. A model sequence is generated
as the input for the ensemble model. Finally, we integrate them with designed
combination methods such as voting.

3.1 Regression Analysis of Cross-Project Transferability

As we introduced in Section 2.2, model-level transfer approaches are preferred
when defect data is unavailable. Prior studies proposed several project features to
characterize the software projects. The most common and popular ones include
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Fig. 1 Our proposed framework for building a JITDP dataset and applying FENSE to the
cross-project JITDP task

the application domain, programming language, the total number of lines of code,
and the number of developers, which have been investigated in both proprietary
and OSS projects (Capiluppi et al. 2003; Zimmermann et al. 2009; Zhang et al.
2013; Zhang et al. 2014; Kamei et al.2016; Lin et al. 2021).

Based on their efforts, our study adopts or refines their proposed metrics
and considers more features for OSS projects in GitHub to characterize them as
comprehensively as possible. Importantly, we study their effects on cross-project
JITDP on a large-scale dataset to retrieve more valuable and convincing results.

To achieve this, we pair each two projects, extract project features from four
levels, and conduct a regression analysis to figure out the factors in cross-project
JITDP performance. In our expectation, the resulting knowledge should enable us
to identify models with higher cross-project transferability. Our ensemble modeling
approach based on this will be discussed in Section 3.2.

Given a project set S, we pair every two projects as (Pi, Pj). The former (Pi)
is called the source project, whose JITDP model Mi is then used for predicting the
risk of commits in the target project Pj . Its performance yij (measured by ROC-
AUC score in our study) shows the cross-project transferability of Mi. For the
project pair (Pi, Pj), we propose several features as predictors, including numerical
and categorical ones, to quantify the features which may have impacts on the
response variable yij .

To perform linear regression, we should guarantee that our data meet several
assumptions (Farrar and Glauber 1967), including the normality of population, the
independence of factors, the homoscedasticity of residuals, and the independence
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between observations. The numerical variables are first log-transformed in our
study to stabilize variance and reduce heteroscedasticity (Cohen et al. 2014). To
ascertain the independence of predictors, we evaluate the variance inflation factors
(VIFs) and the Spearman correlation coefficients ρ. Our paper considers that VIFs
lower than 3 and ρ lower than 0.8 indicate the absence of multicollinearity, which
was suggested by Cohen et al. (2012) and prior studies (Bettenburg et al. 2010;
Kamei et al. 2016; Jiarpakdee et al. 2018).

Given that our data is not independent (a model is used to predict the like-
lihood of defect-prone commits in multiple target projects, and a project is pre-
dicted by multiple models), we group them and build a linear mixed-effect model.
In particular, we use the random intercept model to consider the effect of different
projects. Unique identifiers (i.e., the project indexes) are regarded as random inter-
cepts to eliminate the correlation between different observations, while predictors
are regarded as fixed effects. Here we use the implementation of lmer function in
the lme4 package of R.

To describe software projects comprehensively, we extract several features to
measure the relationship between a project pair. Here some features depend on
both source and target (e.g., same owner type) while others are independent. They
are classified into four levels: model level, project level, social level, and technical
level. Model-level metrics reflect the features of the JITDP model Mi, while the
other three levels portray the similarity between the pair (Pi, Pj). We believe that
how a model is trained and project contextual knowledge are related to cross-
project transferability.

A) Model-level features.

n commits src: This metric refers to the number of commits in the training set
of Mi. In general, more training samples provide a more accurate representation
of true data distribution, leading to a better generalization ability.

model performance src: This metric refers to the performance of Mi. We be-
lieve a good within-project model can also provide accurate predictions for other
projects. Although Kamei et al. (2016) found that the performance of local JITDP
models is not a strong indicator of cross-project JITDP, we intend to validate their
conclusion on a large-scale dataset in our paper.

defect ratio src: This metric refers to the ratio of positive samples, that is, the
proportion of buggy commits in the source project Pi. It indicates the degree of
class imbalance. The higher one means Mi is trained using a more balanced set,
thus it may have a positive influence on its cross-project performance.

Note that these three features are only related to the source project Pi and its
model Mi, hence users do not need to know those of target projects in practice.

B) Project-level features.

project popularity: This metric refers to the popularity of Pi (or Pj) (Capiluppi
et al. 2003). This paper uses the number of ‘Watch’ of a GitHub repository to
reflect its popularity.

project age: This metric refers to the period from the creation of Pi (or Pj) to
the time we collected it in days. We use this metric to reflect its maturity, which
is also used by Capiluppu et al. (2003) and Zhang et al. (2014).

same owner type: This metric refers to whether the owner types of Pi and
Pj are the same. The owner type can be ‘User’ or ‘Organization’ in GitHub.
Projects with the owner type of ‘User’ are personal repositories, while ‘Organiza-
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tion’ projects allow developers to collaborate across many projects and customize
settings.

same license: This metric refers to whether the open-source licenses are the
same for Pi and Pj . A license shows what people can or cannot do with a project.
Common open-source licenses include Apache license 2.0, GPL, MIT, etc.

same language: This metric refers to whether the programming languages of Pi

and Pj are the same. This feature is commonly used by prior studies (Capiluppi et
al. 2003; Zimmermann et al. 2009; Zhang et al. 2013; Zhang et al. 2014; Kamei et
al.2016; Lin et al. 2021). We suspect cross-language predictions are different from
within-language predictions. This paper collects OSS projects in Java, C/C++,
Python. C and C++ are regarded as the same language. We believe Mi has higher
cross-project transferability if Pi and Pj are programmed in the same language.

textual similarity: This metric refers to the textual similarity of project de-
scription and readme files between Pi and Pj . Developers describe the application
domain and functions of a software project in these two parts, which is concerned
by prior researchers (Capiluppi et al. 2003; Zimmermann et al. 2009; Zhang et al.
2013; Zhang et al. 2014; Kamei et al.2016; Lin et al. 2021). We believe the textual
similarity between Pi and Pj highly summarizes the domain and functional infor-
mation between projects. Thus a higher value of it indicates that Mi may perform
better when predicting Pj . In this paper, we first concatenate the brief descrip-
tion and the readme text. Then we clean the text by removing the tags, symbols
with no meaning, and stopwords in English. We use Porter Stemmer in NLTK1

to normalize the terms. Term frequency-inverse document frequency (TF-IDF) is
used to vectorize the text. Finally, the textual similarity is measured by the cosine
similarity between two vectors.

C) Social-level features.
For social-level features, prior studies (Capiluppi et al. 2003; Zhang et al. 2014)

use the number of developers to measure the size of a software system, which
is also used by Zimmermann et al. (2009), Kamei et al. (2016), and Lin et al.
(2021). Our paper refines them using information extracted from the open-source
community. We use the number of core members and external contributors instead
of ‘developers’ to distinguish their roles in the OSS development process. At the
same time, we believe that human behaviors are more related to the cross-project
JITDP rather than only the size of a project.

n core: This metric refers to the number of core members in Pi (or Pj). Core
members are people with higher permission levels, e.g., they can close an issue or
merge a pull request. In GitHub, core members are the owner and the collaborators
of a project.

n external: This metric refers to the number of external contributors in Pi (or
Pj). They can make contributions by submitting pull requests, reporting issues,
giving comments, etc.

core diff: This metric refers to the difference in the number of core members
between Pi and Pj .

external diff: This metric refers to the difference in the number of external
contributors between Pi and Pj .

contributor intersection: This metric refers to the number of co-exist contrib-
utors (include core members and external contributors) in Pi and Pj . If the same

1 https://www.nltk.org/
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group of developers contribute to both projects, they will likely generate similar
development data. Mi may have better cross-project performance when their data
distributions are similar.

entropy diff: This metric refers to the difference of Pi’s and Pj ’s contribution
entropy values. Contribution entropy represents the distribution of the number of
activities among all contributors. It can be calculated by:

entropy = −
n∑

k=1

ck × logn ck (1)

ck =
contributionsk∑n
l=1 contributionsl

(2)

where n refers to the number of contributors, and ck refers to the percentage of
the k-th contributor’s contributions. The value of entropy closer to 1 implies that
the contributions from each contributor are almost the same, while 0 means that
contributions are almost from a single person.

D) Technical-level features.

code size: This metric refers to the code size of Pi (or Pj) in kilobyte, which is
also suggested by Capiluppi et al. (2003), Zimmermann et al. (2009), Zhang et al.
(2013), Zhang et al. (2014), Kamei et al. (2016), and Lin et al. (2021).

code size diff: This metric refers to the difference in code size between Pi and
Pj .

n dependencies: This metric refers to the number of project dependencies in
Pi (or Pj). Dependencies are the relationships between packages. In this paper,
we extract the dependencies of each GitHub repository through libraries.io2.

dependency intersection: This metric refers to the number of co-exist project
dependencies in Pi and Pj .

dependency diff: This metric refers to the difference in the number of code de-
pendencies of Pi and Pj .

Our paper directly adopts several metrics from prior work (Capiluppi et al.
2003; Zimmermann et al. 2009; Zhang et al. 2013; Zhang et al. 2014; Kamei et
al. 2016; Lin et al. 2021), i.e., the programming language, the code size, and the
project age, because they have intuitive relations with cross-project transferability.
For measures that are not available or difficult to obtain in OSS projects, i.e.,
domain, company, and intended audience, we use textual similarity in the project
description and readme files to consider them as a whole.

Besides, we supplement some features during data collection by ourselves. In
RQ1, we discuss each feature’s effect on cross-project transferability, so we consider
adding more features to characterize the projects as comprehensively as possible,
such as the project popularity, the same owner type, the same license, and project
dependencies. Although the relationship between the cross-project transferability
and these features is not straightforward, they can describe the characteristics
of OSS projects to some extent, for instance, their organizational structures. We
hope they can help improve the prediction of cross-project transferability. These
features are all accessible from GitHub.

2 http://libraries.io/
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For numerical features, i.e., the number of developers and the code size, pre-
vious studies separate them into levels or groups (least/less/more/most) to char-
acterize the similarity between projects, while we calculate their precise values
concerning their differences or intersection and apply them to our regression anal-
ysis, e.g., core diff.

3.2 Cross-Project JITDP Based on Ensemble Modeling

Prior studies have mixed attitudes to the effectiveness of ensemble models on
cross-project JITDP. The reason lies in the selection of base learners or ensem-
ble techniques. This paper reconsiders the cross-project problem and proposes a
feature-based ensemble modeling approach named FENSE. The key idea of FENSE
is to seek and integrate the ‘best’ models with higher cross-project performance.
Leveraging the knowledge of project features, we first estimate the cross-project
performance of trained models. For different targets, we select the top-K and gen-
erate a model sequence. This process is called feature-based model selection in our
study. Then, we integrate the models using different combination methods when
the integration scale (denoted by K) changes to predict the defect-proneness of
commits. Since the selected models can be directly employed in the prediction
process, the model application process is also computationally efficient.

Given a training project set Strain(Pi ∈ Strain), a test project set Stest(PT ∈
Stest) and a regression model LME fitted on Strain, the model selection and
application process are described as follows (can also refer to Figure 1):

1. Pair: For each source project Pi in Strain, pair it to the target project PT and
then extract the features of the pair (Pi, PT ). A preprocessing is adopted to
meet the requirement of LME.

2. Predict: Use LME to predict Mi’s cross-project transferability on PT .
3. Select: Prioritize top-K models with higher estimated cross-project perfor-

mance. Here a model sequence is generated for next step.
4. Integrate: Use selected models to predict the risk of commits for each PT and

combine them by voting. Different combination methods and integration scales
(K) are discussed.

Furthermore, the simplicity of FENSE needs to be highlighted. For a target
project, we only need to obtain its features and integrate predicting results of
several trained models, while no retraining is required. Note that we can also
update our local models and linear mixed-effect model to include more up-to-date
data as existing projects evolve, which can be done in a distributed manner.

4 Experimental Design

4.1 Dataset

To investigate the factors in cross-project transferabililty, we need a plethora of
projects with adequate historical data. It is unrealistic to obtain such a large
amount of data from the industry. Thanks to the prosperity of OSS projects on
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online code hosting platforms, e.g., GitHub, GitLab, BitBucket, etc., we are ex-
posed to a series of energetic software with rich development data. Leveraging
the open-source community, we build a large-scale JITDP dataset by carefully se-
lecting projects and annotating their commits. In this work, we demonstrate the
performance of our approach on this crafted dataset. Developers can directly use
their off-the-shelf prediction models or train models by themselves in real scenar-
ios.

4.1.1 Data Collection

We build a JITDP dataset comprised of 900 OSS projects in GitHub. They are
written in three different programming languages (Java, C/C++, Python, 300
respectively), which guarantees that they are code hosting projects. Hence, we
can perform defect prediction tasks on the historical changes. Moreover, to ensure
the quality of annotation, we use four filtering rules as follows:

1. Projects are not forks of existing repositories. This rule guarantees that there
are no identical repositories in our dataset. Repetitive data may perturb our
results.

2. Projects have at least 500 issues. This rule guarantees that we have enough
issue data to annotate commit samples.

3. Projects are ranked and collected by stars. This rule guarantees the popularity
and maturity of projects. These projects are more likely to keep high-quality
development histories, which benefits our data annotation and analysis process.
However, some popular projects with attractive features are not notable (e.g.,
cloud-to-butt). We winnow them out naturally after preprocessing, as they
often lack enough historical data.

4. Projects are described in English. This rule guarantees the validity of textual
information extracted from those projects because several natural language
processing methods are used when collecting software metrics.

After filtration, we obtain 256 Java projects, 291 C/C++ projects, and 284
Python projects.

4.1.2 Data Annotation

We collect and annotate all the historical commits of studied projects from birth
to March 16, 2021. The most common way to label the commits is using the SZZ
algorithm (Sliwerski et al. 2005). However, the risks of SZZ have been concerned by
previous studies for ages. To avoid the common pitfalls, we carefully employ SZZ
by double-checking after each step, and its process is described in the following.

Identifying bug reports. The first step in the SZZ algorithm is to find bug reports
through the issue tracking system. GitHub ITS3 uses labels to mark different issue
types, such as enhancement, feature, etc. However, most of them are user-defined,
and their naming rules differ completely in different projects. Hence, we first collect
all the issue labels in our dataset and manually inspect 300 of them with the highest
frequency. Keywords such as ‘bug’ or ‘defect’ are included in those buggy labels.
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We use regular expressions to distinguish bug reports from other not bug-related
issues. Note that labels such as ‘not a bug’ need to be carefully winnowed out.

Identifying bug-fixing commits. Bug-fixing commits (or bug fixes) are changes that
repair the reported bugs during the production and maintenance phases. Common
practices show that a bug fix often contains a bug report number and bug-related
keywords in the commit message (Sliwerski et al. 2005). GitHub also supports
users to close an issue by entering a commit message like ‘Fixes #47’4. Therefore,
we identify commits with keywords or links to bug reports as bug fixes. Given
that developers may forget to record the bug report numbers, we adopt the idea of
ReLink (Wu et al. 2011) to associate potential bug fixes with bug reports heuris-
tically.

However, the operations above may lead to the overestimation of bug fixes. To
guarantee the reliability of bug fix identification, we adopt two filtration schemes.
For the one, non-functional revisions and revisions made in non-source files (i.e.,
documentation, test codes) cannot fix any bugs. Non-functional revisions include
changes in blank lines or comments and inline format changes. Thus, we treat
these changes as non-fixes.

For the other, commits with a large number of file changes (NF) need to be
reconsidered. Kim et al. (2006) consider it suspicious for the reason that not all
changes in a large-scale revision are related to the bug-fixing activities, as large
commits are often perfective than corrective (Hindle et al. 2008). Moreover, such
commits are likely to be tangled changes (Herzig et al. 2013) when a list of tasks
are performed in one commit. In our paper, we identify outliers in NF and regard
their corresponding bug-introducing commits traced by SZZ as suspects, as we
cannot tell whether they result in bug fixes or not. These suspects are removed
from our dataset.

In our dataset, we regard commits whose NF are above the Upper Median
Absolute Deviation (Upper MAD) as the outliers of each project. MAD is robust
when analyzing non-normal data, and it is also a good indicator to identify outliers
(Leys et al. 2013).

Identifying bug-introducing commits. As mentioned before, non-functional revi-
sions and revisions made in non-source files cannot fix any bugs. So we neglect
those lines and files in SZZ. Apart from this, we also filter out three kinds of sus-
pects in this step. As for version-control-related commits, such as merge-changes,
they only merge the changes from another branch and hence cannot induce fixes.
We add these changes to suspects. Additionally, if a change was committed after
its associated bug reports were made, it should not be the cause of the reported
bugs (Kim et al. 2006). We also regard them as suspects. In da Costa et al.’s study
(2017), they held that the future impact of a commit is a critical standard for the
SZZ algorithm. For a bug-introducing commit, it is improbable to introduce too
many bugs, and the time span of future bugs should not be too long. Therefore,
we collect the number of bug reports related to each bug-introducing commit and
calculate the time span. Subsequently, we use Upper MAD to identify outliers and
add them to suspects.

3 https://guides.GitHub.com/features/issues/
4 https://GitHub.blog/2013-01-22-closing-issues-via-commit-messages/
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Table 1 An overview of our dataset

#Commits #Buggy %Buggy

Java

Mean 6491.1 1044.97 16.1%
Minimum 390 147 5.59%
Median 4992 665 14.85%
Maximum 29241 5719 62.81%

C/C++

Mean 8646.55 1426.48 16.5%
Minimum 558 143 4.39%
Median 4663 787 17.14%
Maximum 58562 12726 67.42%

Python

Mean 5438.27 975.47 17.94%
Minimum 497 164 6.55%
Median 3004 530 18.11%
Maximum 46205 10515 54.81%

In this step, we use GitPython and PyDriller (Spadini et al. 2018) as auxiliary
tools to mine git repositories. Due to the verification latency (Cabral et al. 2019,
Tabassum et al. 2020), the latest commits collected may not be correctly labeled.
By exploring into our data, over half of bugs were reported and fixed in 90 days,
which refers to the defect discovery delay in (Cabral et al. 2019). To ensure that
our data have credible labels, we only use the commits before December 16, 2020.

4.2 Within-Project Model Building

Before our analysis, we build local JITDP models for all projects for two reasons.
One is that they are considered ready-made models for cross-project JITDP and
base learners of our ensemble approach. For the other, local model performance is
a strong indicator of cross-project transferability in our regression analysis.

As a matter of fact, this step is unnecessary when applying our approach if
developers have already had some elaborate models. In this paper, to demonstrate
our idea on ensemble modeling, we explicate how we build JITDP models from
scratch. However, these within-project models are not available when predicting
projects with little historical data in real scenarios.

4.2.1 Preprocessing

We split the commits of each project into training and test set with a ratio of 4 to
1. Before training JITDP models, we employ two preprocessing techniques. The
first is to handle the class imbalance. It is believed that JITDP suffers heavily from
the data imbalance problem (Tan et al. 2015). As is shown in Table 1, defective
changes are also far less than clean ones in our dataset, which only account for
16.1%, 16.5%, 17.94% in Java, C/C++, and Python projects, respectively. If no
proper rebalancing techniques are used, a learner that predicts all the samples
as negative could reach high accuracy. Therefore, we perform an under-sampling
operation in the training set by deleting instances randomly such that the ratio
of the minority class is between 20% and 80%. Similar under-sampling methods
are also used in Yang et al. (2015), Kamei et al. (2016), and Kondo et al. (2020)
’s work.
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Table 2 A brief summary of commit-level metrics in prior work

Aspect Metric Description

Diffusion

NS Number of subsystems modified (Mockus and Weiss 2000)
ND Number of modules modified (Mockus and Weiss 2000)
NF Number of files modified (Nagappan et al. 2006)
Entropy Distribution of modified code across each file (Hassan 2009)

Size
LA Lines of code added (Nagappan and Ball 2005)
LD Lines of code deleted (Nagappan and Ball 2005)
LT Total lines of code in a file (Koru et al. 2009)

Purpose FIX
Whether or not current change is a bug fix (Guo et al. 2010;
Purushothaman and Perry 2005)

History

NDEV
Number of developers that changed the modified files
(Matsumoto et al. 2010)

AGE
Average interval between last and current change (Graves et al.
2000)

NUC Number of unique changes of the modified files (Hassan 2009)

Experience
EXP Developers experience (Mockus and Weiss 2000)
REXP Recent experience
SEXP Developer experience on a subsystem

For the second, we employ filtration to the training and test samples. We filter
out projects with less than 500 training commits to guarantee that each model
has sufficient training data. At the same time, we filter out projects with less than
30 positive (defect-prone) test samples to mitigate the sensitivity of evaluation
metrics (i.e., recall). Here we make a trade-off between the size of our project
set and the threshold mentioned above to guarantee the validity of our regression
analysis. Table 1 shows the statistics of our dataset.

4.2.2 Commit-level Metrics Extraction

Previous research by Kamei et al. (2013) proposed 14 commit-level metrics of 5
dimensions, including NS, ND, NF and Entropy in Diffusion aspect, LA, LD, and
LT in Size aspect, FIX in Purpose aspect, NDEV, AGE, and NUC in History
aspect, and EXP, REXP, SEXP in Experience aspect. Table 2 shows their brief
descriptions. These metrics are widely applied in recent studies (Yang et al. 2015;
Kamei et al. 2016; Yang et al. 2016; Liu et al. 2017; Yang et al. 2017; Huang et
al. 2017; Yan et al. 2020; Kondo et al. 2020).

This paper excludes several metrics and adopts new ones due to the cross-
project context and data characteristics.

Firstly, we remove metrics in the History and Experience aspects because they
are not accessible from software projects without any change histories (Fukushima
et al. 2014; Kamei et al. 2016). Additionally, newly developed projects are common
targets for cross-project JITDP. Without the historical data, predictions cannot
be performed for models that consider History and Experience metrics.

Secondly, we remove NS and ND from the Diffusion aspect. For NS, we man-
ually check the structure of projects in our dataset and find that nearly half of
them are not organized into subsystems. For the others, subsystems can be placed
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in root directories, under the ‘src’ or ‘modules’ paths, or even customized directo-
ries. Here we exclude these metrics to avoid using data unfairly. As ND is highly
correlated with NF, we keep a more fundamental metric NF.

Thirdly, although multicollinearity still exists for some metrics (e.g., LA and
LD), we give up using additional techniques, e.g., Relative Churn (Nagappan and
Ball 2005) for the following reasons. We use Random Forest as our JITDP model,
which is less sensitive to multicollinearity because of its randomized sampling of
features. Moreover, we prefer keeping the meaningful metrics rather than con-
fusing them with others, e.g., lines of code added (LA) is the root cause of bug
introduction in the SZZ algorithm.

Finally, Shihab et al. (2012) find that the number of bug reports linked to a
change (NBR) is also a good predictor for the risk of change. Similar to FIX, it
shows the bug fixing purpose of a software commit, so we adopt it as a supple-
mentary metric in the Purpose aspect.

To sum up, we use NF, Entropy, LA, LD, LT, FIX, and NBR as our predictors
for defective changes.

4.2.3 Model Training

We choose Random Forest (Ho 1995) as our learning model for within-project
prediction. Random Forest is an ensemble model built by several decision trees.
Nodes in these trees consist of a random subset of all features, so this model is
less sensitive to correlations. Random Forest is reported to be more accurate and
robust than other models for defect prediction (Kamei et al. 2016).

We consider tuning four parameters for each model: num of trees, max features,
min sample split, and max samples. Since prior studies (Tosun and Bener 2009;
Tantithamthavorn and Hassan 2018) pointed out that default parameters are often
suboptimal for defective prediction tasks and recommended automated parameter
optimization, we use grid search to find their best values. Scikit-learn (Pedregosa et
al. 2011) is used in our implementation of FENSE and other comparing methods.

4.3 Evaluation

4.3.1 Evaluating Regression Model

Our study uses regression analysis to identify influential factors in cross-project
transferability. Hence, we perform the ANOVA Type-II test to measure the ef-
fects of our proposed metrics. Each metric’s χ2 value represents its impact on
the response variable. The larger the value of χ2 is, the more influential the corre-
sponding metric is. In addition, we also report the significance level of each metric.
When the probability of an event is lower than a significance level, we can claim
that its corresponding metric has a statistically significant impact on the response
variable.

Apart from this, we calculate the conditional R2 proposed by Nakagawa et al.
(2013) to evaluate the goodness-of-fit of our linear mixed-effect model. It indicates
the proportion of total variance explained by fixed and random effects. We use the
implementation of the R function in MuMIn package.
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4.3.2 Evaluating JITDP Models

Evaluation Settings JITDP is a time-sensitive process as commits are in time
order. Bug generation, identification, and fix also happen sequentially. Previous
studies reported that several cross-validation techniques tend to mix data in the
past and future (Tan et al. 2015). However, future commits are unavailable when
applying the prediction models. Hence the results of cross-validation are not con-
vincing. In our study, we use Time Series Split, an approach that splits the training
and test set of each project following the time order (see Figure 2), which was also
employed in Yan et al. (2020) and Wang et al.’s work (2020). Tbirth is the creation
time of a project, while Ttest is the time before which our data have credible labels
as we mentioned in Section 4.1.2. Commits before time Ts are training samples,
while commits after time Ts are test samples. We also adopt Time Series Split
when fine-tuning the model for a similar purpose.
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1 2

1
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Fig. 2 The split of training and test set following the time order

Evaluation Metrics Traditional machine learning metrics are commonly used to
measure the defect predicting performance in previous studies (Kim et al.2008;
Kamei et al. 2013; Tan et al. 2015; Kamei et al. 2016; Wang et al. 2020; Tabassum
et al. 2020; Yan et al. 2020; Kondo et al. 2020), including accuracy, precision,
recall, F1 score, G-Mean, ROC-AUC, etc.

In this paper, we use four of them: ROC-AUC (the area under the curve of
the receiver operating characteristics), precision, recall, and F1 score. ROC-AUC
is threshold-insensitive and less susceptible to imbalanced samples (Kamei et al.
2013; Kamei et al. 2016). Although precision, recall, and F1 score are threshold-
based metrics, which may lead to different outcomes as the threshold changes
(Lessmann et al. 2008). However, they can reflect the model performance in various
aspects. It is helpful in defect prediction tasks, i.e., a higher precision score implies
that fewer efforts are wasted on false positives. In comparison, a higher recall score
demonstrates a higher proportion of defects are unveiled. Therefore, we use them
as auxiliary metrics, whose thresholds are 0.5.

Effort-aware evaluation metrics are also widely used for defect prediction (Jiang
et al. 2013; Kamei et al. 2013; Yang et al. 2015; Yang et al. 2016; Huang et al. 2017;
Fu and Menzies 2017). As a means of software quality assurance, defect prediction
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aims to alleviate the efforts of code inspection to identify potential faults and make
developers focus on the most crucial or defective part of a software project. Prior
work suggested that most of the system faults are in a small percentage of files,
e.g., 20 percent of files (Ostrand et al. 2005). It means that only the most defect-
prone commits are inspected due to the limitation of efforts in real scenarios of
JITDP. Thus, we also evaluate the cost-effectiveness of different approaches with
the constraint of the effort.

We adopt two effort-aware metrics in our paper, PofB20 and Popt. PofB20
refers to the percentage of the total number of bugs when only inspecting 20% of
the committed LOC, i.e., LA+LD (Jiang et al. 2013). It is a normalized measure
of NofB20 (Rahman et al. 2012). We choose PofB20 because the number of bugs
varies significantly in different projects.

Popt is another effort-aware metric proposed by Mende and Koschke (2009),
which also considers the actual distribution of faults by calculating the difference
between the predicted model and the optimal model. It is defined as:

Popt = 1− ∆opt

AUCopt

∆opt = AUCopt −AUCpred

where AUCopt and AUCpred are the area under the curve of the optimal model
and that of the predicted model in the effort-based cumulative chart. As shown
in Figure 3, The shaded area is ∆opt. The smaller it is, the closer the predicted
model is to the optimal one.
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Fig. 3 Example of an effort-based cumulative chart for FENSE

For all approaches, we prioritize their prediction results by Rd(x) Mende and
Koschke (2009), which is defined as:

Rd(x) =
yi

effort(ci)
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where yi is the predicted label of the commit ci, and effort(·) is calculated by
LA+LD.

Compared with data-level transfer methods, FENSE is theoretically simpler
because it leverages the trained local models and does not require retraining when
predicting a new target or when new data arrives. We report each method’s time
and space costs to demonstrate their complexity. Specifically, we split the whole
application process of each cross-project approach into two phases, model training
and model application. For model-level transfer approaches, we report their local
model training time in a serial manner. Note that it is only required when no off-
the-shelf models are provided and it also allows distribute training in practices.
In our paper, we use Intel i7-9700K CPU and GeForce RTX 2080Ti GPU as our
experimental environment.

4.3.3 Comparing Multiple Approaches

In this paper, we compare FENSE with five methods. Four of them are model-level
transfer, including Bellwether+ and three ensemble models (random-ensemble,
sim-ensemble, and all-ensemble). A model selection scheme is applied in each
of these approaches, which allows us to compare the cross-project performance
of their selected models. Besides, a common data-level transfer approach, data-
merging, is also included in our analysis to show the effectiveness of model-level
transfer in large-scale cross-project scenes.

Bellwether+ This approach is proposed by Krishna et al. (2016). ‘Bellwether’
is the model with the best cross-project performance in most projects. However,
we cannot find bellwether in our dataset because it is difficult for a model to
outperform the others on hundreds of projects. To extend the idea of the bellwether
to a statistical one, we redefine it as the model that performs significantly better
than the others in most projects. We name it ‘Bellwether+’, and it can be obtained
as follows:

Given the training project set Strain(Pi, Pj , Pk ∈ Strain). We can obtain Bell-
wether+ by performing the following steps:

1. For each project Pi in Strain, use Mj (within-project model of Pj(i ̸= j) to
predict the likelihood of defect-prone commits, whose performance is yij .

2. For project Pi and model Mj , use the Wilcoxon Rank Sum Test and Bonferroni
Correction to determine whether yij is significantly better than those of other
models, i.e., yik(k ̸= i, k ̸= j).

3. Count the number of projects where Mj outperforms the others and use the
best model as ‘Bellwether+’.

Random-Ensemble To ascertain the effectiveness of our model selection strat-
egy, we build the random-ensemble model for comparison. As mentioned in Section
3.2, our model is built following four steps: Pair, Predict, Select and Integrate.
Random-ensemble follows a similar manner. Instead of using the fitted model to
predict and rank the cross-project transferability, it randomly selects K models
in Strain and gets a model set. Then models are integrated by average-weighted
voting.

Sim-Ensemble Likewise, sim-ensemble generates a different input for ensem-
ble learning. The idea is proposed by Kamei et al. (2016), who attempted to use
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project-related similarity for model selection. In our study, we measure the similar-
ity of two projects using the Euclidean distance of project features. To be specific,
sim-ensemble is built as follows:

1. Pair: For each project Pi in Strain, pair it to PT and then extract the project
metrics.

2. Calculate: Calculate the differences of their metrics and the Euclidean dis-
tance between Pi and PT . A MinMaxScaler is adopted before the distance
calculation.

3. Select: Prioritize top-K models with smallest distances. Here a model sequence
is generated for the next step.

4. Integrate: Use selected models to predict the risk of commits for each PT and
combine them by average-weighted voting.

All-Ensemble This approach integrates models of all projects in the training
set Strain to predict the risk of test commits in PT . It is a general and powerful
baseline in model-level transfer methods, indicating the ideal ensemble model with
maximum base learners.

Data-Merging Data-merging is a common data-level transfer method, which
refers to combining all the data in Strain to train a huge model for all cross-
project JITDP tasks. It is a general and powerful baseline in data-level transfer
methods, indicating the ideal model with maximum training samples.

We apply a Scott-Knott ESD test (Tantithamthavorn et al. 2017, Tantithamtha-
vorn et al. 2018) as our techniques for the comparison test. It can cluster different
approaches into ranks concerning their effect size difference. The Scott-Knott ESD
test generates the ranking results according to two principles: (1) the magnitude
of the difference of all distributions in each rank is negligible; (2) the magnitude
of the difference of the distributions between ranks is non-negligible.

5 Results

5.1 Research Questions

In this paper, we investigate JITDP in the cross-project context by consider-
ing the characteristics of projects. Based on this contextual knowledge, we pro-
pose FENSE, an ensemble approach with a feature-based model selection scheme
that selects models with higher cross-project transferability to perform JITDP. To
structure our findings, we present four research questions as follows:

(RQ1) What are the factors in the cross-project transferability of JITDP
models?

(RQ2) Is our feature-based model selection scheme effective? How much
benefit can it bring to the cross-project performance of JITDP
models?

(RQ3) Can ensemble modeling improve the cross-project performance
of a single JITDP model? What are the effects of different com-
bination methods and integration scales?

(RQ4) How does FENSE perform compared to other cross-project JITDP
models?
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Table 3 Summary of project features and their inter-project relations

Levels Features Mean Std Dev Min Median Max

Model-level
n commits src 4432 5708.111 312 2433 41508
model performance src 0.6374 0.0635 0.5017 0.6351 0.8340
defect ratio src 0.1886 0.0968 0.0439 0.1702 0.6742

Project-level

prjA popularity 12545 13531.81 3459 7964 146808
prjB popularity 12545 13531.81 3459 7964 146808
prjA age 2747 918.46 613 2722 4736
prjB age 2747 918.46 613 2722 4736
same owner type 0.8138 0.3893 0 1 1
same license 0.1083 0.3108 0 0 1
same language 0.3488 0.4766 0 0 1
textual similarity 0.0363 0.0264 0 0.0309 0.6850

Social-level

prjA n core 107.3 295.10 1 25 1516
prjB n core 107.3 295.10 1 25 1516
prjA n external 211.6 114.58 0 204 421
prjB n external 211.6 114.58 0 204 421
core diff 167.9 382.77 0 29 1515
external diff 132.6 93.56 0 117 421
contributor intersection 0.5271 2.0862 0 0 148
entropy diff 0.1986 0.1487 0 0.1682 0.8526

Technical-level

prjA code size 197640 330071.3 2048 72774 2252135
prjB code size 197640 330071.3 2048 72774 2252135
code size diff 264818 385242.2 0 108299 2250087
prjA n dependencies 110.7 327.16 0 4.5 1954
prjB n dependencies 110.7 327.16 0 4.5 1954
dependency intersection 3.389 41.11 0 0 1249
dependency diff 196 419.84 0 20 1954

5.2 (RQ1) What are the factors in the cross-project transferability of JITDP
models?

To answer RQ1, we conduct a regression analysis on a plethora of OSS in GitHub.
After filtration (in Section 4.1.1 and Section 4.2.1), we finally obtain 338 projects
in our dataset. For each of them, we train a local JITDP model. Then we pair each
two of them and obtain 113,906 project pairs, where one’s model is used to predict
the risk of commits of the other. As described in Section 3.1, we extract metrics
in four different levels to measure the relationship between the project pair. Their
statistics are shown in Table 3. The prefixes prjA and prjB refer to the source
and target projects, respectively. Note that we leave out n core, code size, and
n dependencies of both projects considering eliminating multicollinearity, but we
keep core diff, code size diff, and dependency diff as they are more representative
for inter-project relations. Finally, a linear mixed-effect model is built to investigate
the impacts of project features on cross-project transferability.

Table 4 shows the result of regression analysis. The second column shows the
data transformation imposed on each metric. The third and fourth column lists the
coefficients and their standard errors for the fitted mixed-effect model. The fifth
column shows the result of the ANOVA Type-II test. To ensure our explanation of
factors is accurate, we report the conditional R2 of our mixed-effect model, which
is 0.844. It indicates a high goodness-of-fit of the model. By and large, all four
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Table 4 Regression analysis of the cross-project transferability

Response: cross-project ROC-AUC

Levels Metrics Coeffs Std Err Sum Sq (Sig.)

Model-level
log(n commits src) 1.145e-03 1.704e-03 0.45
log(model performance src) 7.827e-02 1.674e-02 21.87 ***
log(defect ratio src) 3.879e-02 3.626e-03 114.45 ***

Project-level

log(prjA popularity) 8.222e-04 2.298e-03 0.13
log(prjB popularity) -1.293e-03 4.143e-03 0.10
log(prjA age) 1.044e-02 3.965e-03 6.94 **
log(prjB age) -2.415e-02 7.022e-03 11.83 ***
same owner type TRUE 1.157e-03 4.359e-04 7.04 **
same license TRUE 1.704e-04 3.129e-04 0.30
same language TRUE 2.518e-03 1.808e-04 193.91 ***
log(textual similarity+0.5) 5.123e-03 2.492e-03 4.23 *

Social-level

log(prjA n external+0.5) 6.346e-03 1.713e-03 13.73 ***
log(prjB n external+0.5) -8.835e-05 3.072e-03 0.00
log(core diff+0.5) 5.673e-05 8.653e-05 0.43
log(external diff+0.5) -4.531e-05 7.652e-05 0.35
log(contributor intersection+0.5) 4.501e-05 1.429e-04 0.10
log(entropy diff+0.5) -2.450e-03 5.328e-04 22.73 ***

Technical-level
log(code size diff+0.5) -2.404e-04 7.363e-05 10.66 **
log(dependency intersection+0.5) 2.419e-04 1.388e-04 3.04 .
log(dependency diff+0.5) -3.290e-04 7.841e-05 0.18

Conditional R2 0.844

Significance of χ2: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

levels more or less explain the cross-project transferability of a JITDP model, of
which same language and defect ratio src are the most influential metrics. In the
following, we will analyze the effect of each metric elaborately.

For model-level features, two of three metrics significantly affect cross-project
transferability, and their coefficients are all positive. For defect ratio src, its sum
of squares is 114.45. Its significance indicates that the higher the proportion of
defect-prone commits is, the better its trained model performs in other projects.
As for model performance src, if a model has a higher within-project ROC-AUC
value, it is more likely to behave the same in the cross-project context, which
contradicts the findings in Kamei et al. (2016). The effect of n commits src is
counterintuitive. The number of training samples has no significant influence on
the cross-project performance. The result implies that we cannot improve model
transferability only by increasing the local training data.

For project-level measures, same language is the strongest predictor for cross-
project prediction, whose SumSq is 193.31 and explains 47% of the variance of the
whole model. If the source and target projects are developed using the same pro-
gramming language, their model cross-project transferability is higher than those
in different languages. We hold that projects with the same programming language
have similar grammatical structures, and thus their change metrics are in similar
distributions. Even though our dataset only includes projects in 3 different lan-
guages, it reflects that the cross-language predicting performance is relatively low.
Hence, we should prioritize models by their languages. Apart from this, the project
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age of the target project has a significant influence on cross-project transferabil-
ity. Its coefficient is negative, which means that the performance of cross-project
prediction will drop when the age of the target project gets longer. We infer that
projects have more distinct features as time goes on, thereby more difficult for
other models to predict the risk of their commits. Moreover, it is inappropriate to
use cross-project models for projects with a long history. In this scenario, within-
project models are better choices if they are available. Same owner type, prjA age,
and textual similarity are also significant, whose effects are all positive. It means
that the same type of management groups, long age of the source project, and sim-
ilar description can enhance the cross-project transferability. Other metrics such
as project popularity and license barely impact the cross-project transferability.

For social-level measures, there are two significant predictors, entropy diff and
prjA n external. The former is the most influential, and its coefficient is negative. It
means that similar distribution of developers’ contributions between two projects
is essential for model transferability. We suspect that their development histories
are close to each other. Hence the change metrics are also in similar distribution.
Interestingly, the number of external contributors of the source project strongly
impacts the transferability of prediction models. We suspect the reason is that a
broader range of developers generate the development data, and thus the model
can generalize better in a cross-project context.

Only two measures at the technical-level are statistically significant, code size diff
and dependency intersection, which both exert a negative influence on cross-project
prediction. When the difference between the project size is smaller, the cross-
project transferability is higher. Likewise, more common dependencies in the source
and target projects indicate better cross-project predicting performance. Hence,
we suggest selecting the model whose project has a similar size and more common
dependencies with the target. However, the number of dependencies do not affect
the cross-project JITDP.

Answer for RQ1: In four levels of software features, many of them signif-
icantly influence the cross-project transferability of JITDP models. The most
powerful one is the programming language, which explains 47% variance of
the whole model. The defect ratio and local model performance at the model
level, the age of the target project at the project level, the number of exter-
nal contributors, and the difference of contribution entropy at the social level
also have substantial impacts on the cross-project predicting performance. We
recommend considering these expressive software features when selecting cross-
project JITDP models.

5.3 (RQ2) Is our feature-based model selection scheme effective? How much
benefit can it bring to the cross-project performance of JITDP models?

In previous studies, a single JITDP model is believed to behave poorly in a cross-
project context (Zimmermann et al. 2009). However, Krishna et al. (2016) sug-
gested that there is always a ‘bellwether’ in a project community. This ‘bellwether’
is considerably simple and can even outperform some data-level transfer meth-
ods. However, Krishna contended that statistics cannot predict it unless tested
against other datasets. Leveraging the result of RQ1, we believe that the con-
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Table 5 The average cross-project performance of the best models selected by different
schemes

Methods ROC-AUC Precision Recall F1 PofB20 Popt

Bellwether+ 0.6770 0.3201 0.5168 0.3654 0.3447 0.5352
Random-ensemble 0.6250 0.3677 0.3567 0.3047 0.2773 0.5088
Sim-ensemble 0.6299 0.3644 0.3670 0.3170 0.2834 0.5137
FENSE-1 0.6854 0.2596 0.6458 0.3475 0.4178 0.5962

* FENSE-1 means only the top model is selected for evaluation

textual knowledge about software features can contribute to the identification of
powerful cross-project models. Hence, we propose a feature-based model selection
scheme to identify candidates with higher cross-project performance. To validate
our method, we obtain the cross-project performance of our selected models and
compare the model selection scheme of FENSE with that of Bellwether+, random-
ensemble, and sim-ensemble.

To avoid data leakage from test projects, we use a stratified sampling approach
to pick out an isolated test set in different programming languages. We randomly
select 67 projects (16 for Java, 28 for C/C++, and 23 for Python) as the test
project set Stest, accounting for 20% of each language. This train-test-split of our
dataset is replicated ten times to mitigate the influence of randomization. Note
that a new mixed-effect model is built relying on different training data.

In Section 3.2 and Section 4.3.3, we introduce the model selection schemes of
different approaches. FENSE builds a mixed-effect model to predict and rank the
cross-project transferability of models on each target project, while sim-ensemble
ranks models by the similarity of project features. As for baselines, we choose
Bellwether+ and random-ensemble. The former represents the model with the
highest generalization ability among the training projects. The latter randomly
selects a group of models from the training projects and represents the average
level of cross-project performance. The random selection is also repeated ten times.

Table 5 shows the average cross-project performance of the best models selected
by different approaches. Among the six measures, the ROC-AUC value is our
primary focus. The reason is that we adopt the ROC-AUC value as our response
variable in regression analysis and the criterion for Bellwether+ to measure the
cross-project transferability. It directly reflects the excellence of the model selection
scheme.

The result illustrates that FENSE can select the model with the highest ROC-
AUC score, which improves by nearly 10% compared to random-ensemble (without
any model selection operations). It also outperforms Bellwether+ slightly. How-
ever, its improvement of ROC-AUC is numerically marginal. It is probably related
to the distribution of the cross-project JITDP performance, with a Mean(Std) of
0.6255(0.0671). Hence, we also report the ranks of FENSE and Bellwether+ on
ROC-AUC in Table 6.

The median rank of FENSE on ROC-AUC is 18 (among 271 training projects),
which shows that FENSE is capable of selecting the model in the top 6.6%. As
for Bellwether+, it only selects one model to predict the defect-proneness of all
test projects, so its rank is below the level of the top 10%. To better illustrate the
strength of FENSE, we also perform the Mann-Whitney U test for the scores and
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Table 6 The median ranks of FENSE-1 and Bellwether+ on ROC-AUC among all training
projects

Methods Rank

Bellwether+ 27.5
FENSE-1 18.0 ***

Signif: 0 ‘***’ 0.001

Table 7 The results of Mann-Whitney U test for FENSE-1 and Bellwether+

Methods Bellwether+ FENSE-1

ROC-AUC 0.6770 0.6854 **
Precision 0.3201 *** 0.2596
Recall 0.5168 0.6458 ***
F1 0.3654 ** 0.3475

PofB20 0.3447 0.4178 ***
Popt 0.5352 0.5962 ***

Signif: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

ranks between these two approaches. The results are shown in Table 6 and Table
7.

The advantage of FENSE in ROC-AUC is statistically significant (p<0.01).
Moreover, FENSE also performs best in effort-aware scenarios because FENSE
considers project features’ variance, thereby finding suitable models according to
different target projects. However, it is weaker than Bellwether+ with respect to
precision and F1 score.

Note that the model selected by FENSE is characterized by its high recall and
low precision score, 0.6458 and 0.2596, respectively. In other words, this model can
retrieve two-thirds of the defect-prone commits. However, there are nearly three
false positives for each real buggy one. We will further analyze this phenomenon
in RQ3 and RQ4 when more models are selected and integrated.

As for sim-ensemble, it has nearly the same ROC-AUC score as random-
ensemble, which means that the similarity of the project metrics is not a good
indicator for cross-project transferability. To verify our judgment, we also evalu-
ate the model sequences generated by FENSE and sim-ensemble. Both of them
rank the JITDP models and produce a sequence for subsequent ensemble modeling.
If an approach can identify better models in a cross-project context, its sequence
must conform to the actual cross-performance of models. Thus, we calculate their
Normalized Discounted Cumulative Gain (NDCG). NDCG is a measure of rank-
ing quality, which is often used to evaluate recommendation systems (Jarvalin et
al. 2002). In this paper, we assign higher relevance scores for models with higher
cross-project performance and obtain results in Table 8. The values are the mean
scores on 67 test projects in ten repeat studies. K means the sequence comprises
the top-K models selected by each method.

We choose the sequence length as 1, 5, 10, 20, and 50 to evaluate the top models
preferred by each method. Random-ensemble is also used as a baseline. The result
confirms our judgment. FENSE is able to rank the cross-project transferability of
models by considering project features comprehensively, while similarity cannot
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Table 8 NDCG-K of the model sequences selected by FENSE, random-ensemble and sim-
ensemble

Methods NDCG-1 NDCG-5 NDCG-10 NDCG-20 NDCG-50

Random 0.5280 0.5350 0.5374 0.5426 0.5642
Similarity 0.5188 0.4966 0.5076 0.5225 0.5458
FENSE 0.8853 0.8816 0.8803 0.8831 0.8954
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Fig. 4 The actual ROC-AUC scores of the model sequence generated by FENSE

cope with their relationship. This is why Kamei et al. (2016) cannot improve the
ensemble model by considering project similarity.

In addition, we calculate the ROC-AUC scores of models on the test set to
validate whether our model selection scheme can actually rank the models by its
estimation. We divide the model sequence into groups according to their ranks.
Each group contains ten models, and we apply Scott-Knott ESD test to these
groups. The result is shown in Figure 4, which indicates that our feature-based
model selection scheme is effective in prioritizing highly transferable models. The
x-axis is the number of the group followed the order of estimated performance.

Answer for RQ2: Our feature-based model selection scheme effectively selects
JITDP models with higher cross-project transferability (measured by ROC-
AUC). Compared to random-ensemble, it can improve nearly 10% and even
outperform Bellwether+ when selecting a single model. In contrast, the sim-
ilarity of project metrics cannot capture the relationship of our contextual
knowledge and the cross-project performance of JITDP models. We suggest
considering the effects of project features comprehensively as we did in RQ1.

5.4 (RQ3) Can ensemble modeling improve the cross-project performance of a
single JITDP model? What are the effects of different combination methods and
integration scales?

Ensemble modeling is a common strategy to enhance cross-project JITDP per-
formance. Instead of finding a powerful learner, it turns to the combination of
multiple models to achieve better cross-project prediction, and the combination
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method thereof is essential (Zhou 2012). Based on the findings of RQ2, we eval-
uate the impacts of ensemble modeling with different combination methods and
integration scales.

We build ensemble models using four different combination methods. One is
majority voting, and the other three belong to soft voting with different weights.
The majority voting is the most popular combination method for classification
tasks. For JITDP, its output is

E(c) =


1 if

K∑
i=1

fi(c) >
1

2
K,

0 otherwise.

(3)

where c is the metrics of a commit, fi(·) is the result of i-th base learner (0 or 1)
and K is the number of combined models.

As for soft voting, it combines the class probability outputs of individual mod-
els. A classifier-specific weight can be assigned to each classifier. Hence the output
is

E(c) =


1 if

K∑
i=1

wipi(c) > 0.5,

0 otherwise.

(4)

where wi is the weight of i-th base learner. wi is positive and satisfies
∑K

i=1 wi = 1.
pi(·) is the defect-proneness of i-th base learner. In our study, we use Random
Forest as the base learner and pi is the percentage of decision trees that predict c
as buggy.

In RQ2, we validate the effectiveness of the model sequence produced by our
feature-based selection scheme. It is in the performance order. Hence we assume
that giving models with better performance higher weights can enhance ensemble
learning. In this paper, the weights are given in three different manners.

– Average:

wi =
1

K
Models have same weights.

– Multilevel:

ωi =
1

2l
l = ⌊i/n⌋

wi =
ωi∑K

j=1 ωj

n is the number of models at the same level. As RQ2 suggests, the cross-project
performance of the model decreases in the sequence when i rises. Hence, we
adjust the weight of a base learner by the level of its estimated performance.
In this study, we set n as 10.

– Performance:

ωi =
1

1− yi

wi =
ωi∑K

j=1 ωj

yi is the cross-project performance of i-th base learner. In our study, it is the
ROC-AUC score. Then models are combined by their estimated performance.
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To answer RQ3, we obtain the performance of different ensemble models as
the hyperparameter K grows. We set K = 1 initially and increase its value by 2
when it is less than thirty and by 5 later on. Similar to RQ2, the train-test-split
of our dataset is replicated ten times, and the reported performance on the test
set are their average values. The results are shown in Figure 5.

 PER

(a) ROC-AUC

 PER

(b) Precision

 PER

(c) Recall

 PER

(d) F1 score

 PER

(e) PofB20

 PER

(f) Popt

Fig. 5 Model performance of four combination methods as the integration scale grows

The curves show that all four combination methods have the same behav-
iors when K rises, and their differences are not significant. Ensemble modeling
with majority voting performs slightly worse than soft voting methods except
for precision values. Average-weighted and performance-weighted methods are al-
most the same on all evaluation metrics, which suggests that a small gap between
model performance makes no difference in ensemble modeling. The behavior of the
multilevel-weighted method stands out when K increases. Because the late-comers
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Table 9 The integration scale of ensemble modeling

K Brief Description

1 Single model
5 Small scale ensemble (a)
9 Small scale ensemble (b)
19 Medium scale ensemble
39 Large scale ensemble
99 Extra large scale ensemble
271 Full scale (all-ensemble)

have a lower weight, this approach tends to retain the properties of the top models,
i.e., high ROC-AUC and low precision scores.

To deeply study the effect of ensemble modeling, we consider several represen-
tative K and analyze the impact of integration scale qualitatively. Table 9 shows
the levels of integration scale in this paper, and Table 10 is the summary of cross-
project performance for ensemble models with four different combination methods
in different integration scales. The results of random-ensemble and sim-ensemble
are also provided to compare the impacts of feature-based model selection to en-
semble modeling without this contextual knowledge.

Firstly, the effect of ensemble modeling on FENSE is the same whichever com-
bination method is taken. It improves the ROC-AUC when the integration scale
is small. All four methods reach their best when K = 9. However, the ROC-AUC
score falls when the scale continues to increase, which is probably because the
input of our ensemble model is a sequence with decreasing ROC-AUC scores. As
for precision and F1 score, their values grow as the integration scale rises, which
suggests that the combination of more models can benefit the classification of
clean commits. However, the recall scores become lower for all methods, including
random-ensemble and sim-ensemble, because it is harder for models to distinguish
defective commits in cross-project context than clean ones. In addition, from the
effort-aware perspective, all four ensemble models are less cost effective when K
rises. Taking FENSE-AVG-99 as an example, we could discover 18.6% fewer defects
than FENSE-AVG-1 with the same code inspection cost. To summarize, there are
only slight differences in ROC-AUC, precision and F1 score when the integration
scale changes, while the recall, PofB20 and Popt of FENSE significantly decrease
when the integration scale is extra large, i.e., K = 99.

Secondly, the effects of ensemble modeling on random-ensemble and sim-ensemble
are different from above. How their performance change with the hyperparameter
K is shown in Figure 6. For sim-ensemble, it obtains its best performance on 3
of 4 non-effort-aware metrics when K = 19, while random-ensemble have better
non-effort-aware performance when the integration scale is larger. On the contrary,
these two approaches achieve worse effort-aware performance when K grows. Their
largest performance decrease happens at the beginning of the integration. Similar
to FENSE, ensemble modeling gives no aids to effort-aware cross-project JITDP.

Thirdly, we report the time and space costs of FENSE and sim-ensemble when
K increases in Table 11 and Figure 7. Here we only consider the costs during model
prediction phase to investigate the effectiveness in different integration sizes.

We can see from the results that the time costs of both models increase linearly
with K. FENSE consumes nearly 50% less memory than sim-ensemble when K <
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Table 10 Summary of cross-project performance for ensemble models with different combi-
nation methods and in different scales

Metrics Methods
K

1 5 9 19 39 99

ROC-AUC

MAJ 0.6854 0.6879 0.6885+ 0.6875 0.6849 0.6736
AVG 0.6854 0.6885 0.6893+ 0.6878 0.6852 0.6749
LEV 0.6854 0.6885 0.6893+ 0.6883 0.6873 0.6839
PER 0.6854 0.6885 0.6892+ 0.6879 0.6854 0.6750
RAN 0.6250 0.6333 0.6346 0.6349 0.6357 0.6359+
SIM 0.6300 0.6381 0.6400 0.6425+ 0.6418 0.6419

Precision

MAJ 0.2596 0.2659 0.2700 0.2784 0.2938 0.3300+
AVG 0.2596 0.2673 0.2702 0.2790 0.2916 0.3250+
LEV 0.2596 0.2673 0.2702 0.2762 0.2809 0.2957+
PER 0.2596 0.2674 0.2701 0.2788 0.2914 0.3236+
RAN 0.3677 0.3971 0.4042 0.4094 0.4137 0.4154+
SIM 0.3644 0.3915 0.3983 0.4039+ 0.402 0.4026

Recall

MAJ 0.6458+ 0.6404 0.6328 0.6117 0.5774 0.4994
AVG 0.6458+ 0.6402 0.6354 0.6119 0.5821 0.5086
LEV 0.6458+ 0.6402 0.6354 0.6192 0.6070 0.5717
PER 0.6458+ 0.6402 0.6353 0.6121 0.5829 0.5106
RAN 0.3567+ 0.3501 0.3487 0.3461 0.3467 0.3462
SIM 0.3670+ 0.3626 0.3622 0.3639 0.3622 0.3617

F1

MAJ 0.3475 0.3518 0.3540 0.3571 0.3619 0.3641+
AVG 0.3475 0.3527 0.3545 0.3578 0.3612 0.3637+
LEV 0.3475 0.3527 0.3545 0.3567 0.3582 0.3614+
PER 0.3475 0.3527 0.3545 0.3577 0.3612 0.3634+
RAN 0.3047 0.3285 0.3326 0.3347 0.3369 0.3380+
SIM 0.3170 0.3399 0.3456 0.3511+ 0.3488 0.3487

PofB20

MAJ 0.4178+ 0.4132 0.4088 0.3960 0.3770 0.3357
AVG 0.4178+ 0.4126 0.4099 0.3956 0.3798 0.3401
LEV 0.4178+ 0.4126 0.4099 0.4004 0.3931 0.3738
PER 0.4178+ 0.4126 0.4099 0.3958 0.3803 0.3410
RAN 0.2773+ 0.2645 0.2627 0.2611 0.2603 0.2604
SIM 0.2834+ 0.2655 0.2644 0.2638 0.2614 0.2603

Popt

MAJ 0.5962+ 0.5917 0.5873 0.5758 0.5589 0.5231
AVG 0.5962+ 0.5914 0.5887 0.5759 0.5613 0.5270
LEV 0.5962+ 0.5914 0.5887 0.5799 0.5734 0.5560
PER 0.5962+ 0.5914 0.5886 0.5760 0.5617 0.5277
RAN 0.5088+ 0.4838 0.4798 0.4769 0.4752 0.4739
SIM 0.5137+ 0.4857 0.4796 0.4762 0.4730 0.4709

Bold text means an approach achieves the best performance among all methods;
‘+’ symbol means an approach achieves the best performance among all integration scales.

20, but their values remain steady when K > 30. If an ensemble method achieves
a competitive results when K is small, we had better not integrate more models
because of its cost and decreasing performance, particularly effort-aware ones.

Note that when K = 271, both FENSE and random-selection will degrade to
all-ensemble. FENSE still has its distinct characteristics when the integration scale
is extra-large. However, random-selection converges to all-ensemble quickly, which
can be derived from Figure 5 and Figure 6. Nevertheless, the comparison between
FENSE and the other two approaches suggests that merely integrating more mod-
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Fig. 6 The performance of random-ensemble and sim-ensemble as the integration scale grows

els without proper consideration of software features cannot benefit cross-project
JITDP.

Answer for RQ3: For FENSE, the effect of ensemble modeling on cross-
project JITDP is not comparable to that of the model selection scheme. Com-
bination methods and integration scales are both less influential for FENSE.
However, the integration scale benefits random-ensemble and sim-ensemble
in non-effort-aware scenarios. When it comes to cost-effectiveness, ensem-
ble modeling provides no supports for cross-project JITDP, no matter which
approach is used. Considering the costs of model application, ensemble ap-
proaches should only integrate several models rather than hundreds of them if
their differences are not significant.
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Table 11 Time and space costs of FENSE and sim-ensemble during model prediction phase
in different integration scales

Methods Costs
K

1 5 9 19 39 99

FENSE
Space 289.22 311.01 299.29 301.29 663.84 666.03
Time 9.89 41.77 70.71 136.73 283.46 688.77

sim-ensemble
Space 368.15 512.79 564.78 569.26 593.82 661.97
Time 9.61 38.18 66.10 134.92 276.49 700.18
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Fig. 7 Time and space costs of FENSE and sim-ensemble during model prediction phase when
K increases

5.5 (RQ4) How does FENSE perform compared to other cross-project JITDP
models?

To evaluate the performance of FENSE more elaborately, we compare it to the
other four common cross-project methods and apply the Scott-Knott ESD test
to the prediction results on six different evaluation metrics. Similar to RQ2 and
RQ3, the results are the mean scores on 67 test projects in 10 replicated studies. In
particular, we use average-weighted combination methods and K = 9 for FENSE
while adopting average-weighted and K = 19 for sim-ensemble to represent their
performance better, leveraging the results from RQ3.

Table 12 The average cross-project JITDP performance of five approaches

Methods ROC-AUC Precision Recall F1 PofB20 Popt

Data-Merging 0.6352 0.3334 0.3749 0.3309 0.2888 0.5149
Bellwether+ 0.6770 0.3201 0.5168 0.3654 0.3447 0.5352
Sim-Ensemble-19 0.6425 0.4039 0.3639 0.3511 0.2638 0.4762
All-Ensemble 0.6357 0.4156 0.3460 0.3377 0.2598 0.4732
FENSE-AVG-9 0.6893 0.2702 0.6354 0.3545 0.4099 0.5887
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(b) Scott-Knott ESD test on precision
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(c) Scott-Knott ESD test on recall
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Fig. 8 The results of Scott-Knott ESD test on six evaluation metrics (BW is the abbreviation
for Bellwether+, while DM for data-merging, Sim for sim-ensemble and All for all-ensemble)

Figure 12 and Table 8 illustrate our experimental results. For the ROC-AUC
score, FENSE and Bellwether+ have an apparent advantage over sim-ensemble,
all-ensemble and data-merging. FENSE gets 0.6893, and Bellwether+ gets 0.677.
For precision, all-ensemble gets 0.4156 and performs best, followed by sim-ensemble
with a score of 0.4039. FENSE ranks at the third level with only 0.2702 in pre-
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Table 13 The results of Mann-Whitney U test for FENSE-AVG-9 and Bellwether+

Methods Bellwether+ FENSE-AVG-9

ROC-AUC 0.6770 0.6893 ***
Precision 0.3201 *** 0.2702
Recall 0.5168 0.6354 ***
F1 0.3654 . 0.3545

PofB20 0.3447 0.4099 ***
Popt 0.5352 0.5887 ***

Signif: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 14 Time and space costs of five methods

Methods
Training Application

Space (MB) Time (s) Space (MB) Time (s)

Data-Merging 7281.71 7048.49 18538.97 204.52
Bellwether+ 425.33 3895.76 189.92 44.91
Sim-Ensemble-19 425.33 3895.76 569.26 342.05
All-Ensemble 425.33 3895.76 573.01 1824.81
FENSE-AVG-9 425.33 3895.76 940.20 285.63

cision. Nevertheless, the recall score of all approaches behaves oppositely against
precision. FENSE achieves 0.6354 while Bellwether+ only gets 0.5168 in the sec-
ond rank. The rest approaches only have recall scores below 0.4. With respect to
the F1 score, Bellwether+, sim-ensemble, and FENSE are in the first rank.

From the effort-aware aspect, FENSE are the best approach with a PofB20
of 0.4099 and a Popt of 0.5887, which means that developers can identify 40% of
all defect-prone commits when only inspecting 20% committed LOC. Bellwether+
ranks second. Its PofB20 still outperforms other approaches, while it has no obvious
advantage on Popt. Data-merging is less effective than FENSE and Bellwether+,
followed by sim-ensemble and all-ensemble.

According to the Scott-Knott ESD test, FENSE and Bellwether+ both rank
first on ROC-AUC and F1 score. To further investigate whether their differences
are significant, we employ the Mann-Whitney U test for their performance.

As illustrated in Table 13, FENSE outperforms Bellwether+ significantly with
respect to the ROC-AUC score, recall, PofB20 and Popt (p<0.001), while their
difference in the F1 score is not significant (p>0.05). The result demonstrates that
FENSE is a better approach to the cross-project JITDP task than Bellwether+.

Additionally, we report the time and space costs for all approaches in Table
14. In the left two columns, we provide the average model training time in 10
repeated studies. For model-level transfer approaches, we report the training time
for 271 local training projects in a serial manner. Note that it will cost nothing if
local models have been trained. And it allows distribute training in real scenarios.
Likewise, in the right two columns, we provide the total prediction time for 67
test projects and average them in 10 repeated studies. For FENSE, its costs in
different application phases is also compared with sim-ensemble in Table 15.

Data-merging requires the most time and memory usage when training among
the five approaches because it builds a JITDP learner using millions of training
samples. Its model application also has a large memory cost, however, its perfor-
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Table 15 Time and space costs of FENSE and sim-ensemble in different application phases

Methods
Phases

Feature Preparation Model Selection Model Prediction

Space Time Space Time Space Time

Sim-Ensemble-19 303.01 205.85 234.92 1.28 569.26 134.92
FENSE-AVG-9 303.01 205.85 940.20 9.07 299.29 70.71

Space is measured in MB, time is measured in s.

mance is far from satisfactory. In contrast, model-level transfer methods cost less
and its models also allow distribute training, which is more practical and efficient
in real scenarios.

For Bellwether+, it is also competitive with respect to the model costs, even
though a large number of projects are provided. As we suggested before, it uses
the model with the highest generalization ability to predict target projects. Its
good performance also indicates a fair cross-project predictor in our dataset. From
our statistics, it is a popular Python repository Scrapy5, whose JITDP model
outperforms 97% models in the training set in cross-project context. It is worth
going further to discover why these bellwethers are such outstanding.

For all-ensemble, its time cost is much more higher than others but it has
the worst result except precision, which demonstrates that merely increasing the
number of integrated models provides no good for cross-project JITDP.

As for sim-ensemble, it has similar time cost but less memory usage compared
to FENSE. The extra space cost origins from the regression model of FENSE.
However, without this analysis, sim-ensemble cannot handle the effects of project
features on cross-project transferability, thus obtains a weak performance on most
metrics.

For our proposed FENSE, it ranks first on 5 out of 6 measures except precision.
The result highlights its ability to retrieve defect-prone commits and advantages
in effort-aware scenarios. Combined with the results from RQ2 and RQ3, we find
that our scheme tends to prioritize ‘radical’ models that are more likely to classify
commits as buggy ones. Moreover, as the integration scale (or K) grows, its F1
score rises but falls in PofB20 and Popt. Importantly, the cost of our feature-based
model selection scheme is acceptable. For each test project, the feature preparation
and model selection only costs 215/67 = 3.2s. The peak memory usage in the whole
process is less than 1GB.

Answer for RQ4: FENSE ranks first on 5 out of 6 measures compared to
existing cross-project approaches. Its result also highlights that our feature-
based selection scheme is powerful to retrieve more defect-prone commits and
is more cost-effective. Bellwether+ performs well in our dataset. The model
trained on a popular Python project outperforms 97% models in cross-project
context. The reason is worth further investigation. Additionally, the costs of
feature-based model selection scheme in FENSE is negligible compared to data-
level transfer approaches.

5 https://github.com/scrapy/scrapy/
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6 Threats to Validity

To manifest the construct validity of our study, we use six evaluation metrics
(ROC-AUC, precision, recall, F1 score, PofB20 and Popt) to evaluate the effec-
tiveness of the defect prediction model, which is a common measure used in clas-
sification problems. Moreover, for the features proposed in this paper, we conduct
a statistical test to our mixed-effect model to ascertain their influences. Finally,
performance among methods is checked using the Mann-Whitney U test and the
Scott-Knott ESD test. As for internal validity, we only consider the numerical
values of features. Their distributions may also have impacts on the cross-project
transferability. When building local JITDP models, we remove metrics from the
History and Experience aspects because they are not accessible for new projects.
However, these metrics could positively affect the model performance as our RQ1
result suggests. Thus, taking them into consideration can further improve our
models. Normalization is required to make the metrics less project-specific. Dur-
ing data annotation, we use an improved SZZ algorithm to annotate the changes.
However, it may still introduce noises that cause the low prediction performance of
models. For instance, the effects of tangled commits and undetected non-functional
changes. Prior studies show that the mislabel changes do not influence our major
findings (Fan et al. 2019). Furthermore, we repeat our experiments to eliminate
the impact of randomness introduced in our study. As for external validity, we
conduct our analysis using a large scale of data from OSS projects in GitHub.
But it is still unclear if our approach can also perform well in commercial projects
or OSS projects hosted on other platforms. What is more, we choose Random
Forest as our base learner and whether our regression model can predict other
learners’ transferability is still a question. And the judgments on our ensemble
approach are not guaranteed in other prediction tasks. As for the comparisons
among methods, the state-of-the-art models should be taken into consideration,
such as deep-learning-based approaches.

7 Conclusion

Data-driven methods like machine learning improve the intelligence in the software
domain, but they do not work when historical data is not available. Cross-project
approaches are proposed to address this problem, which assumes that different
projects share similar defect-related features. However, projects have various char-
acteristics in JITDP tasks, and a cross-project model is unlikely to perform well
without proper consideration. This paper proposes FENSE, a feature-based en-
semble modeling approach to cross-project JITDP. Its model selection scheme
considers the variance of project features and integrates models with higher trans-
ferability. To support this, we conduct a large-scale empirical study on 113,906
pairs built on 338 OSS projects in GitHub. We identify several influential metrics
for cross-project performance, such as programming language and the defect ratio
of the source project. In addition, we analyze the effects of our model selection
scheme and ensemble modeling. For ensemble models, different combinations and
integration scales are investigated. Finally, we validate FENSE on an isolated test
set by comparing it to other cross-project JITDP approaches on six evaluation
metrics. We draw the following conclusions:
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– We prove that project features play an important role in cross-project JITDP,
especially the programming language and the defect ratio of the source project.
However, a suitable model selection scheme is required to consider their im-
pacts comprehensively, i.e., the similarity of project metrics cannot capture the
relationship between our context knowledge and the cross-project transferabil-
ity.

– The effect of ensemble modeling is not comparable to the model selection
scheme. Ensemble models can achieve their expected performance by inte-
grating several models, and merely integrating more models without proper
consideration of software features cannot benefit cross-project JITDP.

– Our proposed FENSE outperforms other cross-project approaches on 5 out of
6 metrics. It tends to prioritize ’radical’ models that are more likely to classify
commits as buggy ones, which can retrieve more defect-prone commits. Apart
from this, FENSE is more cost-effective than other approaches considering the
inspection process. It is also resource-saving and allows distributed training.

– Similar to Krishna et al. (2016), our study demonstrates that the idea of model-
level reusing is encouraging because both Bellwether+ and FENSE can select a
single model with high performance in a cross-project context. However, their
identification relies on the scale of the study. We suggest that future research
on cross-project approaches should be conducted on a large dataset to discover
the factors in transferability and better evaluate them.

In future work, we will investigate how to utilize more knowledge in software de-
velopment and maintenance to support cross-project JITDP, such as the semantics
of changes. Moreover, our results will be compared with modern deep learning ap-
proaches that attain state-of-the-art performance on various software tasks. Model
effectiveness also needs to be validated in real scenarios to give aids to software
practices.
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